
Jyoti Singh

Abhishek Kumar Gupta

Sarvesh Kumar Gupta

Shivani Gupta

Ramesh Kumar Arya

Amarjeet Yadav
- Student, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
- Assistant Professor, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
- Research Scholar, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
- Research Scholar, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
- Research Scholar, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, Uttar Pradesh, India
- Post-Doc Fellow, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
Abstract
Density Functional Theory (DFT) is very useful method to study the geometrical, electronic, and other important properties of molecules. Parameters and required data of Poly(vinylidene fluoride-co- hexachloropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and polymer electrolyte (PVDF-HFP + LiTFSI) are calculated with the B3LYP functional and 6-31+G(d,p) and 6- 31++G(d,p) basis sets using Gaussian03. The optimized geometry, total energy, ionization potential, electron affinity, energy gap, and electronegativity were calculated. In result, the energy gap decreases while electron affinity increases of polymer electrolyte. Mulliken Charge distribution analysis done. IR studies shows the dominating nature of PVDF-HFP.
Keywords: DFT, HOMO-LUMO, Ionization Potential, Electron Affinity, Bandgap
[This article belongs to Journal of Nanoscience, NanoEngineering & Applications(jonsnea)]

Full Text
Browse Figures
References
1. Chawla, N., Bharti, N., & Singh, S., “Recent advances in non-flammable electrolytes for safer lithium-ion batteries,” Batteries, pp. 1-26, 2018.
2. Gonçalves, R., Miranda, D., Almeida, A. M., Silva, M. M., Meseguer-Dueñas, J. M., Ribelles, J. L. G., Costa, C. M., “Solid polymer electrolytes based on lithium bis (trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries,” Sustainable Materials and Technologies, 2018.
3. Tripathi, A. K., & Singh, R. K., “Lithium salt assisted enhenced performance of supercapacitor based on quasi solid-state electrolyte,” Journal of Saudi Chemical Society, 2018.
4. C.M. Costa, M.M. Silva, S. Lanceros-Méndez, “Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications,” RSC Advances , pp. 11404- 11417, 2013.
5. A.M. Elmér, P. Jannasch, “Polymer electrolyte membranes by in situ polymerization of poly(ethylene carbonate-co-ethylene oxide) macromonomers in blends with poly(vinylidene fluoride-co-hexafluoropropylene),” Journal of Polymer Science Part B: Polymer Physics, pp. 79- 90, 2007.
6. P. Tuhania, and P. K. Singh., “High performance polymer,” pp. 911–917, 2018.
7. X. Wang, C. Xiao, H. Liu, Q. Huang, J. Hao, and H. Fu, “Materials (Basel),” 2018.
8. N. Asthana, M. M. Dwivedi, and K. Pandey, in International Journal of Emerging Engineering Research and Technology, 5, pp. 21–27, 2017.
9. X. Wang, C. Xiao, H. Liu, Q. Huang, and H. Fu, J. Appl. Polym. Sci., 135, pp. 1–9, 2018.
10. R. Sarkar and T. K. Kundu, J. Chem. Sci., 130, 1–18, (2018).
11. H. R. I. Vlfv, R. Ri, and D. Duphw, pp. 66–69, 2013.
12. S. P. Jakriya, A. M. Syed, S. K. Pillai, and D. B. Rahim, Mater. Express, pp. 77–84, 2018.
13. C. G. Zhan, J. A. Nichols, and D. A. Dixon, J. Phys. Chem. A, pp. 4184–4195, 2003.
14. W. Wang and H. Fan, “Ferroelectrics,” pp. 41–44, 2010.
15. S. Pal and T. K. Kundu, ISRN Phys. Chem.,pp. 1–16, 2013.
16. R. Mejri, J. Dias, and S. B. Hentati, Eur. Polym. J.,pp. 445–451, 2016.
17. R. Sachdeva, no. Icaet, pp. 13–15, 2016.
18. R. Mathammal, N. Jayamani, and N. Geetha, J. Spectrosc., pp. 1, 2013.
19. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, (2004).

Journal of Nanoscience, NanoEngineering & Applications
Volume | 11 |
Issue | 3 |
Received | May 27, 2021 |
Accepted | June 20, 2021 |
Published | July 15, 2021 |