Laser Beam Machining Techniques and Applications: A Review

Year : 2024 | Volume : 11 | Issue : 03 | Page : 28 35
    By

    Tukaram Sargar,

  • Aniket Jadhav,

  • Nitish Kumar Gautam,

  1. Assistant Professor, Department of Electronics and Communication Engineering, Smt. Kashibai Navale College of Engineering, Pune, Maharashtra, India
  2. Assistant Professor, Department of Electronics and Communication Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan, India
  3. Student, Department of Electronics and Communication Engineering, Shri Jagdishprasad Jhabarmal Tibrewala University, Vidyanagri, Jhunjhunu, Rajasthan, India

Abstract

Laser beam machining (LBM) is the most common thermal energy-based non-contact, non-conventional machining process. The non-conventional manufacturing processes are used to remove extra material using a variety of mechanical, thermal, electrical, chemical, or combinations of these energies without the use of sharp cutting tools as is required for conventional manufacturing. With innovative approaches to manufacturing processes, it has transformed a number of industries. It is frequently used to machine a nearly complete classification of materials. The metal materials include carbon steel, titanium, stainless steel, copper, aluminum, and alloys of these metals, whereas a majority of non-metal materials are plastics, ceramics, rubber, and wood. A laser beam is directed during this procedure to melt and vaporize the undesirable material from the base material. This method works well for cutting geometrically challenging shapes. On sheet metal, a variety of machining operations, such as micromachining, cutting, and drilling, are readily and precisely performed. By examining several process parameters that have an impact on the quality characteristics, researchers have recently investigated a variety of strategies to enhance the performance of the LBM process The proper selection of material parameters (type, thickness, optical and thermal properties), operating parameters (assist gas pressure and cutting speed), and laser parameters (power, pulse width, frequency, modes of operation, pulse energy, wavelength, and focal position) can all greatly improve process performance, according to experimental studies. The primary factors influencing laser cutting quality are the laser power, pulse frequency, cutting speed, and focus location. In this paper detailed review of available literature is carried out to study the effect of LBM on different metallic materials like AISI 304, advanced high-strength steels (AHSS), EN43, mild steel, stainless steel, EN 1.4301, titanium alloy, alloy steels 1.4571, mild steel, alumina, and 22MnB5 steel

Keywords: Laser beam machine, process and performance parameters, micromachining, LBM process, AHSS

[This article belongs to Journal of Microwave Engineering and Technologies ]

How to cite this article:
Tukaram Sargar, Aniket Jadhav, Nitish Kumar Gautam. Laser Beam Machining Techniques and Applications: A Review. Journal of Microwave Engineering and Technologies. 2024; 11(03):28-35.
How to cite this URL:
Tukaram Sargar, Aniket Jadhav, Nitish Kumar Gautam. Laser Beam Machining Techniques and Applications: A Review. Journal of Microwave Engineering and Technologies. 2024; 11(03):28-35. Available from: https://journals.stmjournals.com/jomet/article=2024/view=177503


References

  1. Dubey AK, Yadava V. Laser beam machining—A review. Int J Mach Tools Manuf. 2008;48(6):609–28. DOI: 10.1016/j.ijmachtools.2007.10.017.
  2. Rajaram N, Sheikh-Ahmad J, Cheraghi SH. CO2 laser cut quality of 4130 steel. Int J Mach Tools Manuf. 2003;43(4):351–8. DOI: 10.1016/S0890-6955(02)00270-5.
  3. Ghany KA, Newishy M. Cutting of 1.2mm thick austenitic stainless steel sheet using pulsed and CW Nd:YAG laser. J Mater Process Technol. 2005;168(3):438–47. DOI: 10.1016/j.jmatprotec.2005.02.251.
  4. Karatas C, Keles O, Uslan I, Usta Y. Laser cutting of steel sheets: Influence of workpiece thickness and beam waist position on kerf size and stria formation. J Mater Process Technol. 2006;172(1):22–9. DOI: 10.1016/j.jmatprotec.2005.08.017.
  5. Orishich AM, Malikov AG, Shulyatyev VB, Golyshev AA. Experimental comparison of laser cutting of steel with fiber and CO2 lasers on the basis of minimal roughness. Phys Procedia. 2014;56:875–84. DOI: 10.1016/j.phpro.2014.08.106.
  6. Librera E, Riva G, Safarzadeh H, Previtali B. On the use of areal roughness parameters to assess surface quality in laser cutting of stainless steel with CO2 and fiber sources. Procedia CIRP. 2015;33:532–7. DOI: 10.1016/j.procir.2015.06.069.
  7. Choubey A, Jain RK, Ali S, Singh R, Vishwakarma SC, Agrawal DK, et al. Studies on pulsed Nd:YAG laser cutting of thick stainless steel in dry air and underwater environment for dismantling applications. Opt Laser Technol. 2015;71:6–15. DOI: 10.1016/j.optlastec.2015.02.007.
  8. Pocorni J, Petring D, Powell J, Deichsel E, Kaplan AFH. Measuring the melt flow on the laser cut front. Phys Procedia. 2015;78:99–109. DOI: 10.1016/j.phpro.2015.11.022.
  9. Mullick S, Madhukar YK, Roy S, Nath AK. Performance optimization of water-jet assisted underwater laser cutting of AISI 304 stainless steel sheet. Opt Lasers Eng. 2016;83:32–47. DOI: 10.1016/j.optlaseng.2016.02.022.
  10. Pessoa DF, Herwig P, Wetzig A, Zimmermann M. Influence of surface condition due to laser beam cutting on the fatigue behavior of metastable austenitic stainless steel AISI 304. Eng Fract Mech. 2017;185:227–40. DOI: 10.1016/j.engfracmech.2017.05.040.
  11. Wetzig A, Herwig P, Hauptmann J, Baumann R, Rauscher P, Schlosser M, et al. Fast laser cutting of thin metal. Procedia Manuf. 2019;29:369–74. DOI: 10.1016/j.promfg.2019.02.150.
  12. Kotadiya DJ, Kapopara JM, Patel AR, Dalwadi CG, Pandya DH. Parametric analysis of process parameter for laser cutting process on SS-304. Mater Today Proc. 2018;5(3):5384–90. DOI: 10.1016/j.matpr.2017.12.124.
  13. Muthuramalingam T, Akash R, Krishnan S, Phan NH, Pi VN, Elsheikh AH. Surface quality measures analysis and optimization on machining titanium alloy using CO2 based laser beam drilling process. J Manuf Process. 2021;62:1–6. DOI: 10.1016/j.jmapro.2020.12.008.
  14. Patel A, Bhavsar SN. Experimental investigation to optimize laser cutting process parameters for difficult-to-cut die alloy steel using response surface methodology. Mater Today Proc. 2021;43:28–35. DOI: 10.1016/j.matpr.2020.11.201.
  15. Yilbas BS, Karatas C, Arif AFM, Abdul Aleem BJA. Laser control melting of alumina surfaces and thermal stress analysis. Opt Laser Technol. 2011;43(5):858–65. DOI: 10.1016/j.optlastec.2010.10.009.
  16. Cekic A, Begic-Hajdarevic D, Kulenovic M, Omerspahic A. CO2 laser cutting of alloy steels using N2 assist gas. Procedia Eng. 2014;69:310–5. DOI: 10.1016/j.proeng.2014.02.237.
  17. Kotadiya DJ, Pandya DH. Parametric analysis of laser machining with response surface method on SS-304. Procedia Technol. 2016;23:376–82. DOI: 10.1016/j.protcy.2016.03.040.
  18. Lum KCP, Ng SL, Black I. CO2 laser cutting of MDF. Opt Laser Technol. 2000;32(2):67–76. DOI: 10.1016/S0030-3992(00)00020-7.
  19. Thawari G, Sundar JKS, Sundararajan G, Joshi SV. Influence of process parameters during pulsed Nd:YAG laser cutting of nickel-base superalloys. J Mater Process Technol. 2005;170(1–2):229–39. DOI: 10.1016/j.jmatprotec.2005.05.021.
  20. Li L, Sobih M, Crouse PL. Striation-free laser cutting of mild steel sheets. CIRP Ann. 2007;56(1):193–6. DOI: 10.1016/j.cirp.2007.05.047.
  21. Grum J, Zuljan D. Analysis of heat effects in laser cutting of steels. J Mater Eng Perform. 1996;5(4):526–37. DOI: 10.1007/BF02648851.
  22. Rao BT, Kaul R, Tiwari P, Nath AK. Inert gas cutting of titanium sheet with pulsed mode CO2 Opt Lasers Eng. 2005;43(12):1330–48. DOI: 10.1016/j.optlaseng.2004.12.009.
  23. Pramanik D, Kuar AS, Sarkar S, Mitra S. Optimization of surface roughness on stainless steel 316L using low power fiber laser beam machining. In: Proceedings of the 10th International Conference on Precision, Meso, Micro and Nano Engineering (COPEN 10); 2017; IIT Madras. p. 650–3.
  24. Zhang Y, Lei J. Prediction of laser cutting roughness in intelligent manufacturing mode based on ANFIS. Procedia Eng. 2017;174:82–9. DOI: 10.1016/j.proeng.2017.01.152.
  25. Alizadeh A, Omrani H. An integrated multi-response Taguchi-neural network-robust data envelopment analysis model for CO2 laser cutting. Measurement. 2019;131:69–78. DOI: 10.1016/j.measurement.2018.08.054.
  26. Karthikeyan R, Senthilkumar V, Thilak M, Nagadeepan A. Application of grey relational analysis for optimization of kerf quality during CO2 laser cutting of mild steel. Mater Today Proc. 2018;5(13):19209–15. DOI: 10.1016/j.matpr.2018.06.276.
  27. Adelmann B, Hellmann R. Investigation on flexural strength during fiber laser cutting of alumina. Phys Procedia. 2013;41:405–7. DOI: 10.1016/j.phpro.2013.03.094.
  28. Krzysztof J, Piotr L, Piotr N. Effect of cutting speed on surface quality and heat-affected zone in laser cutting of 316L stainless steel. Procedia Eng. 2016;149:155–62. DOI: 10.1016/j.proeng.2016.06.650.
  29. Riveiro A, Mejías A, Soto R, Quintero F, del Val J, Boutinguiza M, et al. CO2 laser cutting of natural granite. Opt Lasers Technol. 2016;76:19–28. DOI: 10.1016/j.optlastec.2015.07.018.
  30. Ozaki H, Koike Y, Kawakami H, Suzuki J. Cutting properties of austenitic stainless steel by using laser cutting process without assist gas. Adv Opt Technol. 2012;2012:1–8. DOI: 10.1155/2012/234321.
  31. Löhr C, La Fé-Perdomo I, Ramos-Grez JA, Calvo J. Kerf profile analysis and neural network-based modeling of increasing thickness PMMA sheets cut by CO2 Opt Lasers Technol. 2021;144:107386. DOI: 10.1016/j.optlastec.2021.107386.
  32. Zeilmann RP, Conrado RD. Effects of cutting power, speed and assist gas pressure parameters on the surface integrity cut by laser. Procedia CIRP. 2022;108:367–71. DOI: 10.1016/j.procir.2022.03.060.
  33. Norkey G, Pratap Singh KP, Prajapati A, Sharma V. Intelligent parameters optimization for laser cutting of highly reflective and thermally conductive materials using artificial neural network. Mater Today Proc. 2021;46:4757–64. DOI: 10.1016/j.matpr.2020.10.309.
  34. Lamikiz A, Lacalle LNL, Sánchez JA, del Pozo D, Etayo JM, López JM. CO2 laser cutting of advanced high strength steels (AHSS). Appl Surf Sci. 2005;242(1-2):362–8. DOI: 10.1016/j.apsusc.2004.08.039.
  35. Tahir Abdul Fattah M, Aqida SN. An investigation of laser cutting quality of 22MnB5 ultra high strength steel using response surface methodology. Opt Lasers Technol. 2017;92:142–9. DOI: 10.1016/j.optlastec.2017.01.005.

Regular Issue Subscription Review Article
Volume 11
Issue 03
Received 10/08/2024
Accepted 25/08/2024
Published 18/09/2024


Login


My IP

PlumX Metrics