Comparative Analysis of Data Augmentation Techniques in CNN-Based Classification of Atelectasis

Year : 2024 | Volume :11 | Issue : 03 | Page : –
By
vector

Nidhi Kadam,

vector

Nidhi Kadam,

vector

Tanuja Sarode,

  1. Assistant Professor, Thadomal Shahani Engineering College, Bandra West, Mumbai, Maharashtra, India
  2. Student, Thadomal Shahani Engineering College, Bandra West, Mumbai, Maharashtra, India
  3. Professor, Thadomal Shahani Engineering College, Bandra West, Mumbai, Maharashtra, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_106751’);});Edit Abstract & Keyword

This research delves into the critical issue of atelectasis, its causes, and potential complications if left untreated. Leveraging deep learning algorithms, particularly Convolutional Neural Networks (CNN), the paper explores their application in medical image analysis, focusing on the detection of atelectasis using the “chestX-ray8” database. The study compares various data augmentation techniques for improved accuracy, showcasing the importance of augmentation in enhancing model generalization. Through meticulous experimentation and evaluation, the research underscores the significance of balanced augmentation strategies in refining CNN performance for medical image analysis, offering valuable insights for future research and practice in radiology applications.  The several data augmentation methods used in CNN-based Atelectasis classification are compared in this review study. Geometric modifications, intensity-based augmentations, and sophisticated techniques like Generative Adversarial Networks (GANs) are all covered in this paper. We examine each technique’s advantages and disadvantages, how they affect model performance, and whether or not they can be used in clinical situations through a methodical examination. The purpose of this article is to help practitioners and researchers choose the best augmentation techniques to increase the accuracy and robustness of CNN models for the categorisation of atelectasis.

Keywords: Atelectasis, Chest X-ray Analysis, Deep Learning Models, Data Augmentation Techniques, Convolutional Neural Network Architecture, Medical Image Diagnosis, Radiological Reports, Image Classification Metrics, Respiratory Diseases, Patient Outcomes

[This article belongs to Journal of Microwave Engineering and Technologies (jomet)]

How to cite this article:
Nidhi Kadam, Nidhi Kadam, Tanuja Sarode. Comparative Analysis of Data Augmentation Techniques in CNN-Based Classification of Atelectasis. Journal of Microwave Engineering and Technologies. 2024; 11(03):-.
How to cite this URL:
Nidhi Kadam, Nidhi Kadam, Tanuja Sarode. Comparative Analysis of Data Augmentation Techniques in CNN-Based Classification of Atelectasis. Journal of Microwave Engineering and Technologies. 2024; 11(03):-. Available from: https://journals.stmjournals.com/jomet/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_106751’);});Edit

[1]
  Grott K, Chauhan S, Dunlap JD. Atelectasis. [Updated 2023 Jun 19]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK545316/

[2]
E. Ribeiro, D. A. Cardenas, J. E. Krieger, and M. A. Gutierrez, “Interpretable deep learning model for cardiomegaly detection with chest X-ray images,” Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023), 2023. doi:10.5753/sbcas.2023.229943

[3]
M. Li, Y. Jiang, Y. Zhang, and H. Zhu, “Medical image analysis using deep learning algorithms,” ORIGINAL RESEARCH article Front. Public Health, 07 November 2023 Sec. Digital Public Health Volume 11 – 2023 | https://doi.org/10.3389/fpubh.2023.1273253  

    [4]
        S. Yang, W. Xiao, M. Zhang, S. Guo, J. Zhao, and F. Shen, “Image Data Augmentation for Deep Learning: A Survey,” arXiv preprint arXiv:2204.08610, Apr. 2022.

[5]
K. Alomar, H. I. Aysel, and X. Cai, “Data Augmentation in classification and segmentation: A survey and new strategies,” Journal of Imaging, vol. 9, no. 2, p. 46, 2023. doi:10.3390/jimaging9020046

[6]
F. Garcea, A. Serra, F. Lamberti, and L. Morra, “Data Augmentation for Medical Imaging: A systematic literature review,” Computers in Biology and Medicine, vol. 152, p. 106391, 2023. doi: 10.1016/j.compbiomed.2022.106391

      [7]
      A. Manickam et al., “Automated pneumonia detection on chest X-ray images: A deep learning approach with different optimizers and Transfer Learning Architectures,” Measurement, vol. 184, p. 109953, 2021. doi: 10.1016/j.measurement.2021.109953

[8]
A. A. Nasser and M. A. Akhloufi, “Deep learning methods for chest disease detection using radiography images,” SN Computer Science, vol. 4, no. 4, 2023. doi:10.1007/s42979-023-01818-w

[9]
S. Candemir, S. Rajaraman, G. Thoma, and S. Antani, “Deep learning for grading cardiomegaly severity in chest X-rays: An investigation,” 2018 IEEE Life Sciences Conference (LSC), 2018. doi:10.1109/lsc.2018.8572113

[10]
H. H. Pham, T. T. Le, D. Q. Tran, D. T. Ngo, and H. Q. Nguyen, “Interpreting chest X-rays via CNNS that exploit hierarchical disease dependencies and uncertainty labels,” Neurocomputing, vol. 437, pp. 186–194, 2021. doi: 10.1016/j.neucom.2020.03.127

[11]
M. A. Al-antari, C.-H. Hua, J. Bang, and S. Lee, “‘fast deep learning computer-aided diagnosis of COVID-19 based on digital chest X-ray images,’” Applied Intelligence, vol. 51, no. 5, pp. 2890–2907, 2020. doi:10.1007/s10489-020-02076-6

[12]
A. W. Salehi et al., “A study of CNN and transfer learning in medical imaging: Advantages, challenges, future scope,” Sustainability, vol. 15, no. 7, p. 5930, 2023. doi:10.3390/su15075930

[13]
A. E. Maxwell, T. A. Warner, and L. A. Guillén, “Accuracy Assessment in Convolutional Neural Network-Based Deep Learning Remote Sensing Studies—Part 1: Literature Review,” Remote Sensing, vol. 13, no. 13, p. 2450, 2020. [Online]. Available: https://doi.org/10.3390/rs13132450

[14]
M. Innat, Md. F. Hossain, K. Mader, and A. Z. Kouzani, “A convolutional attention mapping deep neural network for classification and localization of cardiomegaly on chest x-rays,” Scientific Reports, vol. 13, no. 1, 2023. doi:10.1038/s41598-023-32611-7

[15]
M. Puttagunta and S. Ravi, “Medical image analysis based on Deep Learning Approach,” Multimedia Tools and Applications, 2021. doi:10.1007/s11042-021-10707-4

[16]
L. CC, M. S. Hsieh, J. K. Hsiao, C. W. Wu, H. H. Yang, Y. Chen, P. C. Hsieh, I. S. Tzeng, and Y. K. Wu, “Deep Learning-based Artificial Intelligence Improves Accuracy of Error-prone Lung Nodules,” Int. J. Med. Sci., vol. 19, no. 3, pp. 490-498, Mar. 6, 2022. doi: 10.7150/ijms.69400

[17]
 X. Wang et al., “Chestx-Ray8: Hospital-scale chest X-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017. doi:10.1109/cvpr.2017.369

 


Regular Issue Subscription Review Article
Volume 11
Issue 03
Received 08/08/2024
Accepted 24/08/2024
Published 09/10/2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}