Survey on Retinal OCT Image Preprocessing, Segmentation, and Deep Learning-Based Classification

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2024 | Volume :11 | Issue : 03 | Page : –
By
vector

Ranjitha Rajan,

vector

S.N Kumar,

  1. 1Research Scholar, Lincoln University College – Kota Bharu, Malaysia, 1Assistant Professor, Department of Electrical Communication Engineering, Amal Jyothi College of Engineering, Koovappally, Kerala, India
  2. Associate Professor, Department of Electronics and Electrical Engineering, Amal Jyothi College of Engineering, Koovappally, Kerala, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_107092’);});Edit Abstract & Keyword

Optical Coherence Tomography (OCT) is a non-invasive technique that generates high-resolution, detailed cross-sectional images of biological tissues. By utilizing low-coherence interferometry, OCT enables visualization of tissue microstructure with micron-scale resolution, making it useful in various medical fields such as ophthalmology, cardiology, and dermatology. In ophthalmology, OCT is extensively used for diagnosing and monitoring retinal diseases like macular degeneration and diabetic retinopathy, allowing doctors to assess changes in tissue morphology over time. Moreover, OCT plays a crucial role in guiding surgical procedures, assessing treatment efficacy, and advancing our understanding of disease pathogenesis. Its ability to provide detailed, real-time images with minimal patient discomfort has made OCT a cornerstone technology in modern medical imaging, revolutionizing patient care and research practices. This survey comprehensively reviews the recent advances in preprocessing, segmentation, and deep learning-based classification of retinal OCT images, highlighting the latest techniques, challenges, and future directions for improving diagnostic accuracy and clinical applications.

Keywords: Optical Coherence Tomography (OCT), age-related macular degeneration (AMD), diabetic retinopathy (DR), Optical Coherence Tomography (OCT), convolutional neural networks (CNNs)

[This article belongs to Journal of Image Processing & Pattern Recognition Progress (joipprp)]

How to cite this article:
Ranjitha Rajan, S.N Kumar. Survey on Retinal OCT Image Preprocessing, Segmentation, and Deep Learning-Based Classification. Journal of Image Processing & Pattern Recognition Progress. 2024; 11(03):-.
How to cite this URL:
Ranjitha Rajan, S.N Kumar. Survey on Retinal OCT Image Preprocessing, Segmentation, and Deep Learning-Based Classification. Journal of Image Processing & Pattern Recognition Progress. 2024; 11(03):-. Available from: https://journals.stmjournals.com/joipprp/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_107092’);});Edit

  1. Abràmoff MD, Garvin MK, Sonka M. Retinal imaging and image analysis. IEEE reviews in biomedical engineering. 2010 Dec 10;3:169-208.
  2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA, Fujimoto JG. Optical coherence tomography. science. 1991 Nov 22;254(5035):1178-81.
  3. Chhablani PP, Ambiya V, Nair AG, Bondalapati S, Chhablani J. Retinal findings on OCT in systemic conditions. InSeminars in Ophthalmology 2018 May 19 (Vol. 33, No. 4, pp. 525-546). Taylor & Francis.
  4. Jaffe GJ, Caprioli J. Optical coherence tomography to detect and manage retinal disease and glaucoma. American journal of ophthalmology. 2004 Jan 1;137(1):156-69.
  5. Gabriele ML, Wollstein G, Ishikawa H, Xu J, Kim J, Kagemann L, Folio LS, Schuman JS. Three-dimensional optical coherence tomography imaging: advantages and advances. Progress in retinal and eye research. 2010 Nov 1;29(6):556-79.
  6. Chauhan DS, Marshall J. The interpretation of optical coherence tomography images of the retina. Investigative ophthalmology & visual science. 1999 Sep 1;40(10):2332-42.
  7. Salvatelli A, Bizai G, Barbosa G, Drozdowicz B, Delrieux C. A comparative analysis of pre-processing techniques in colour retinal images. InJournal of Physics: Conference Series 2007 Nov 1 (Vol. 90, No. 1, p. 012069). IOP Publishing.
  8. Setiawan AW, Mengko TR, Santoso OS, Suksmono AB. Color retinal image enhancement using CLAHE. InInternational conference on ICT for smart society 2013 Jun 13 (pp. 1-3). IEEE.
  9. Goatman KA, Whitwam AD, Manivannan A, Olson JA, Sharp PF. Colour normalisation of retinal images. InProceedings of medical image understanding and analysis 2003 (pp. 49-52). United Kingdom: The University of Sheffield.
  10. Marrugo AG, Millán MS. Retinal image analysis: preprocessing and feature extraction. InJournal of Physics: Conference Series 2011 (Vol. 274, No. 1, p. 012039). IOP Publishing.
  11. Soomro TA, Ali A, Jandan NA, Afifi AJ, Irfan M, Alqhtani S, Glowacz A, Alqahtani A, Tadeusiewicz R, Kantoch E, Zheng L. Impact of Novel Image Preprocessing Techniques on Retinal Vessel Segmentation. Electronics 2021, 10, 2297.
  12. Hernandez-Matas C, Argyros AA, Zabulis X. Retinal image preprocessing, enhancement, and registration. Computational Retinal Image Analysis. 2019 Jan 1:59-77.
  13. Lakshmi Chakka. Analyzing Optimal Image Preprocessing Techniques for Automated Retinal Disease Diagnosis. The National High School Journal of Science 2023. 1-8.
  14. Bahr T, Vu TA, Tuttle JJ, Iezzi R. Deep Learning and Machine Learning Algorithms for Retinal Image Analysis in Neurodegenerative Disease: Systematic Review of Datasets and Models. Translational Vision Science & Technology. 2024 Feb 1;13(2):1-23.
  15. Panda NR, Sahoo AK. A detailed systematic review on retinal image segmentation methods. Journal of Digital Imaging. 2022 Oct;35(5):1250-70.
  16. Shatil SR, Kabir MM. Retinal OCT Image Classification Based on CNN and Transfer Learning. InInternational Conference on Soft Computing and Pattern Recognition 2022 Dec 14 (pp. 433-444). Cham: Springer Nature Switzerland.
  17. DeBuc DC. A review of algorithms for segmentation of retinal image data using optical coherence tomography. Image Segmentation. 2011 Apr 19;1:15-54.
  18. Pekala M, Joshi N, Liu TA, Bressler NM, DeBuc DC, Burlina P. Deep learning based retinal OCT segmentation. Computers in biology and medicine. 2019 Nov 1;114:103445.
  19. Ramesh KK, Kumar GK, Swapna K, Datta D, Rajest SS. A review of medical image segmentation algorithms. EAI Endorsed Transactions on Pervasive Health and Technology. 2021 Apr 12;7(27):e6.
  20. Alqudah, Amin, and Ali Mohammad Alqudah. Artificial intelligence hybrid system for enhancing retinal diseases classification using automated deep features extracted from OCT images. International Journal of Intelligent Systems and Applications in Engineering. 2021;9(3):91-100.
  21. Tchinda BS, Tchiotsop D, Noubom M, Louis-Dorr V, Wolf D. Retinal blood vessels segmentation using classical edge detection filters and the neural network. Informatics in Medicine Unlocked. 2021 Jan 1;23:100521.
  22. Luo S, Yang J, Gao Q, Zhou S, Zhan CA. The edge detectors suitable for retinal OCT image segmentation. Journal of Healthcare Engineering. 2017;2017(1):3978410.
  23. Kugelman J, Alonso-Caneiro D, Read SA, Vincent SJ, Collins MJ. Enhanced OCT chorio-retinal segmentation in low-data settings with semi-supervised GAN augmentation using cross-localisation. Computer Vision and Image Understanding. 2023 Dec 1;237:103852.
  24. Orujov F, Maskeliūnas R, Damaševičius R, Wei WJ. Fuzzy based image edge detection algorithm for blood vessel detection in retinal images. Applied Soft Computing. 2020 Sep 1;94:106452.
  25. Xiaoming L, Ke X, Peng Z, Jiannan C. Edge detection of retinal OCT image based on complex shearlet transform. IET Image Processing. 2019 Aug;13(10):1686-93.
  26. González-López A, Remeseiro B, Ortega M, Penedo MG, Charlón P. A texture-based method for choroid segmentation in retinal EDI-OCT images. InComputer Aided Systems Theory–EUROCAST 2015: 15th International Conference, Las Palmas de Gran Canaria, Spain, February 8-13, 2015, Revised Selected Papers 15 2015 (pp. 487-493). Springer International Publishing.
  27. Iqbal E, Niaz A, Memon AA, Asim U, Choi KN. Saliency-driven active contour model for image segmentation. IEEE Access. 2020 Nov 18;8:208978-91.
  28. Thompson AC, Jammal AA, Berchuck SI, Mariottoni EB, Medeiros FA. Assessment of a segmentation-free deep learning algorithm for diagnosing glaucoma from optical coherence tomography scans. JAMA ophthalmology. 2020 Apr 1;138(4):333-9.
  29. Du G, Cao X, Liang J, Chen X, Zhan Y. Medical Image Segmentation based on U-Net: A Review. Journal of Imaging Science & Technology. 2020 Mar 1;64(2).
  30. Tong Y, Lu W, Yu Y, Shen Y. Application of machine learning in ophthalmic imaging modalities. Eye and Vision. 2020 Dec;7:1-5.
  31. Badar M, Haris M, Fatima A. Application of deep learning for retinal image analysis: A review. Computer Science Review. 2020 Feb 1;35:100203.
  32. Shyla NJ, Emmanuel WS. Glaucoma detection using multiple feature set with recurrent neural network. The Computer Journal. 2023 Oct;66(10):2426-36.
  33. Alsaih K, Lemaitre G, Rastgoo M, Massich J, Sidibé D, Meriaudeau F. Machine learning techniques for diabetic macular edema (DME) classification on SD-OCT images. Biomedical engineering online. 2017 Dec;16:1-2.
  34. Akinniyi O, Rahman MM, Sandhu HS, El-Baz A, Khalifa F. Multi-stage classification of retinal OCT using multi-scale ensemble deep architecture. Bioengineering. 2023 Jul 10;10(7):823.
  35. Papandrianos NI, Feleki A, Papageorgiou EI, Martini C. Deep learning-based automated diagnosis for coronary artery disease using SPECT-MPI images. Journal of Clinical Medicine. 2022 Jul 5;11(13):3918.
  36. Sengupta S, Singh A, Leopold HA, Gulati T, Lakshminarayanan V. Ophthalmic diagnosis using deep learning with fundus images–A critical review. Artificial intelligence in medicine. 2020 Jan 1;102:101758.
  37. Panchal S, Naik A, Kokare M, Pachade S, Naigaonkar R, Phadnis P, Bhange A. Retinal Fundus Multi-Disease Image Dataset (RFMiD) 2.0: a dataset of frequently and rarely identified diseases. Data. 2023 Jan 28;8(2):29.

Regular Issue Subscription Review Article
Volume 11
Issue 03
Received 20/07/2024
Accepted 25/09/2024
Published 11/10/2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}