Carbon Capture Technologies: Innovations, Challenges, and Environmental Implication


Year : 2025 | Volume : 15 | Issue : 01 | Page : 7-18
    By

    Hashimu Adamu,

  • A.Y Abdulkarim,

  1. Lecturer, Department of Armament Engineering, Airforce Institute of Technology (AFIT), Kaduna, Nigeria
  2. Senior Lecturer, Department of Chemical Engineering‬, Abubakar Tafawa Balewa University, Bauchi, Nigeria

Abstract

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_161369’);});Edit Abstract & Keyword

This review work provides a comprehensive overview of carbon capture and storage (CCS) technologies, their status, and future directions. It examines various capture methods, including pre-combustion, post-combustion, oxyfuel combustion, and direct air capture, as well as emerging and hybrid technologies such as metal-organic frameworks, ionic liquids, and microencapsulation. The study discusses the limits of current technologies and attempts to point out innovations needed to ameliorate these challenges. It also explores strategies for the widespread adoption of CCS, emphasizing the role of government policy formulation, implementation and industry collaboration. The review concludes by identifying research and development priorities and recommending approaches to accelerate the deployment of CCS technologies to meet global climate mitigation targets.

Keywords: Carbon capture, storage, energy efficiency, combustion, global

[This article belongs to Journal of Energy, Environment & Carbon Credits (joeecc)]

How to cite this article:
Hashimu Adamu, A.Y Abdulkarim. Carbon Capture Technologies: Innovations, Challenges, and Environmental Implication. Journal of Energy, Environment & Carbon Credits. 2025; 15(01):7-18.
How to cite this URL:
Hashimu Adamu, A.Y Abdulkarim. Carbon Capture Technologies: Innovations, Challenges, and Environmental Implication. Journal of Energy, Environment & Carbon Credits. 2025; 15(01):7-18. Available from: https://journals.stmjournals.com/joeecc/article=2025/view=0


window.onload = function () {
let slideIndex = 0;
const slides = document.querySelectorAll(“.Slide img”);
const prevBtn = document.querySelector(“.prevBtn”);
const nextBtn = document.querySelector(“.nextBtn”);
function showSlide(index) {
slides.forEach((slide, i) => {
slide.style.display = i === index ? “block” : “none”;
});
}
showSlide(slideIndex);
prevBtn.addEventListener(“click”, () => {
slideIndex = (slideIndex > 0) ? slideIndex – 1 : slides.length – 1;
showSlide(slideIndex);
});
nextBtn.addEventListener(“click”, () => {
slideIndex = (slideIndex < slides.length – 1) ? slideIndex + 1 : 0;
showSlide(slideIndex);
});
};

Browse Figures

document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_161369’);});Edit

References

  1. Ahmad T, Zhang D. A critical review of comparative global historical energy consumption and future demand: The story told so far. Energy Rep. 2020 Nov 1; 6: 1973–91.
  2. Esiri AE, Jambol DD, Ozowe C. Best practices and innovations in carbon capture and storage (CCS) for effective CO2 storage. International Journal of Applied Research in Social Sciences (IJARSS). 2024 Jun 13; 6(6): 1227–43.
  3. Paltsev S, Morris J, Kheshgi H, Herzog H. Hard-to-Abate Sectors: The role of industrial carbon capture and storage (CCS) in emission mitigation. Appl 2021 Oct 15; 300: 117322.
  4. Fawzy S, Osman AI, Doran J, Rooney DW. Strategies for mitigation of climate change: a review. Environ Chem Lett. 2020 Nov; 18: 2069–94.
  5. Lau HC, Ramakrishna S, Zhang K, Radhamani AV. The role of carbon capture and storage in the energy transition. Energy 2021 Apr 7; 35(9): 7364–86.
  6. Sidiyanto YA, Windiatmaja JH, Sari RF. The Pathway Towards Supporting the Implementation of the New Indonesian Law on Carbon Capture and Storage in Indonesian Universities. In E3S Web of Conferences; EDP Sciences. 2024; 513: 01009.
  7. Srivastava K. Carbon Capture and Sequestration: An Overview. Int J Res Appl Sci Eng Technol. 2021; 9(12): 775–779.
  8. Smith KH, Ashkanani HE, Morsi BI, Siefert NS. Physical solvents and techno-economic analysis for pre-combustion CO2 capture: A review. Int J Greenh Gas Control. 2022 Jul 1; 118: 13567.
  9. Kheirinik M, Ahmed S, Rahmanian N. Comparative techno-economic analysis of carbon capture processes: Pre-combustion, post-combustion, and oxy-fuel combustion operations. Sustainability. 2021 Dec 8; 13(24):
  10. Zhou T, Shi H, Ding X, Zhou Y. Thermodynamic modeling and rational design of ionic liquids for pre-combustion carbon capture. Chem Eng Sci. 2021 Jan 16; 229: 116076.
  11. Kuramochi T, Ramírez A, Turkenburg W, Faaij A. Comparative assessment of CO2 capture technologies for carbon-intensive industrial processes. Progress Energy Combust Sci. 2012 Feb 1; 38(1): 87–112.
  12. Chiang PC, Pan SY, Chiang PC, Pan SY. Post-combustion carbon capture, storage, and utilization. In: Carbon dioxide mineralization and utilization. Singapore: Springer; 2017; 9–34.
  13. Tlili N, Grévillot G, Vallières C. Carbon dioxide capture and recovery by means of TSA and/or VSA. Int J Greenh Gas Control. 2009 Sep 1; 3(5): 519–27.
  14. Lin H, Lu J, Abed AM, Nag K, Fayed M, Deifalla A, Mahfouz AS, Galal AM. Simulation of CO2 capture from natural gas by cyclic pressure swing adsorption process using activated carbon. Chemosphere. 2023 Jul 1; 329: 138583.
  15. Kikkinides ES, Yang RT, Cho SH. Concentration and recovery of carbon dioxide from flue gas by pressure swing adsorption. Ind Eng Chem Res. 1993 Nov; 32(11): 2714–20.
  16. Raganati F, Miccio F, Ammendola P. Adsorption of carbon dioxide for post-combustion capture: a review. Energy 2021 Aug 5; 35(16): 12845–68.
  17. Bhatti AH, Waris M, Kazmi WW, Kang KH, Bhatti UH. Acid-treated activated carbon as simple and inexpensive catalyst to accelerate CO2 desorption from aqueous amine solution. Carbon Capture Sci Technol. 2023 Sep 1; 8: 100131.
  18. Khan U, Ogbaga CC, Abiodun OA, Adeleke AA, Ikubanni PP, Okoye PU, Okolie JA. Assessing absorption-based CO2 capture: Research progress and techno-economic assessment overview. Carbon Capture Sci Technol. 2023 Sep 1; 8: 100125.
  19. Barzagli F, Bhatti UH, Kazmi WW, Peruzzini M. Solid acid catalysts for low-temperature regeneration of non-aqueous sorbents: An innovative technique for energy-efficient CO2 capture processes. Carbon Capture Sci Technol. 2023 Sep 1; 8: 100124.
  20. Li X, Peng Z, Pei Y, Ajmal T, Rana KJ, Aitouche A, Mobasheri R. Oxy‐fuel combustion for carbon capture and storage in internal combustion engines–A review. Int J Energy Res. 2022 Feb; 46(2): 505–22.
  21. Rajabloo T, Valee J, Marenne Y, Coppens L, De Ceuninck W. Carbon capture and utilization for industrial applications. Energy Rep. 2023 Apr 1; 9: 111–
  22. Sodiq A, Abdullatif Y, Aissa B, Ostovar A, Nassar N, El-Naas M, Amhamed A. A review on progress made in direct air capture of CO2. Environ Technol Innov. 2023 Feb 1; 29: 102991.
  23. Voskian S, Hatton TA. Faradaic electro-swing reactive adsorption for CO2 capture. EnergyEnviron Sci. 2019; 12(12): 3530–47.
  24. McQueen N, Gomes KV, McCormick C, Blumanthal K, Pisciotta M, Wilcox J. A review of direct air capture (DAC): scaling up commercial technologies and innovating for the future. Prog 2021 Jul 1; 3(3): 032001.
  25. Castro-Munoz R, Ahmad MZ, Malankowska M, Coronas J. A new relevant membrane application: CO2 direct air capture (DAC). Chem Eng J. 2022 Oct 15; 446:137047.
  26. Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D, AlBahily K, Vinu A. Emerging trends in porous materials for CO 2 capture and conversion. Chem Soc Rev. 2020; 49(13): 4360–404.
  27. Alrubaye RThA, Kareem HM. Carbon Dioxide Adsorption on MOF-199 Metal-Organic Framework at High Pressure. In IOP Conf Ser: Mater Sci Eng; IOP Publishing. 2019 Jun 1; 557(1): 012060.
  28. Ding M, Flaig RW, Jiang HL, Yaghi OM. Carbon capture and conversion using metal–organic frameworks and MOF-based materials. Chem Soc Rev. 2019; 48(10): 2783–828.
  29. Dubey A, Arora A. Advancements in carbon capture technologies: A review. J Clean Prod. 2022 Nov 1; 373: 133932.
  30. Scholes CA, Kentish SE, Qader A. Membrane gas-solvent contactor pilot plant trials for post-combustion CO2 capture. Sep Purif Technol. 2020 Apr 15; 237: 116470.
  31. Atlaskin AA, Kryuchkov SS, Yanbikov NR, Smorodin KA, Petukhov AN, Trubyanov MM, Vorotyntsev VM, Vorotyntsev IV. Comprehensive experimental study of acid gases removal process by membrane-assisted gas absorption using imidazolium ionic liquids solutions absorbent. Sep Purif Technol. 2020 May 15; 239:116578.
  32. Lian S, Song C, Liu Q, Duan E, Ren H, Kitamura Y. Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J Environ Sci. 2021 Jan 1; 99: 281–95.
  33. Cao M, Zhao L, Xu D, Ciora R, Liu PK, Manousiouthakis VI, Tsotsis TT. A carbon molecular sieve membrane-based reactive separation process for pre-combustion CO2 capture. J Membr Sci. 2020 Jun 15; 605: 118028.
  34. Font-Palma C, Cann D, Udemu C. Review of cryogenic carbon capture innovations and their potential applications. C. 2021 Jul 29; 7(3):
  35. Karamian S, Mowla D, Esmaeilzadeh F. The effect of various nanofluids on absorption intensification of CO2/SO2 in a single-bubble column. Processes. 2019 Jun 26; 7(7):393.
  36. Yu W, Wang T, Park AH, Fang M. Toward sustainable energy and materials: CO2 capture using microencapsulated sorbents. Ind Eng Chem Res. 2020 Apr 30; 59(21): 9746–59.
  37. Ochedi FO, Yu J, Yu H, Liu Y, Hussain A. Carbon dioxide capture using liquid absorption methods: a review. Environ Chem Lett. 2021 Feb; 19: 77–109.
  38. Yu X, Catanescu CO, Bird RE, Satagopan S, Baum ZJ, Lotti Diaz LM, Zhou QA. Trends in research and development for CO2 capture and sequestration. ACS omega. 2023 Mar 23; 8(13): 11643–64.
  39. Stavrakas V, Spyridaki NA, Flamos A. Striving towards the deployment of bioenergy with carbon capture and storage (BECCS): A review of research priorities and assessment needs. Sustainability. 2018 Jun 28; 10(7):2206.
  40. Arning K, Offermann-van Heek J, Sternberg A, Bardow A, Ziefle M. Risk-benefit perceptions and public acceptance of Carbon Capture and Utilization. Environ Innov Soc Transit. 2020 Jun 1; 35: 292–308.
  41. Shirmohammadi R, Aslani A, Ghasempour R. Challenges of carbon capture technologies deployment in developing countries. Sustain Energy Technol 2020 Dec 1; 42: 100837.

Regular Issue Subscription Review Article
Volume 15
Issue 01
Received 15/10/2024
Accepted 03/12/2024
Published 14/02/2025

async function fetchCitationCount(doi) {
let apiUrl = `https://api.crossref.org/works/${doi}`;
try {
let response = await fetch(apiUrl);
let data = await response.json();
let citationCount = data.message[“is-referenced-by-count”];
document.getElementById(“citation-count”).innerText = `Citations: ${citationCount}`;
} catch (error) {
console.error(“Error fetching citation count:”, error);
document.getElementById(“citation-count”).innerText = “Citations: Data unavailable”;
}
}
fetchCitationCount(“10.37591/JoEECC.v15i01.0”);

Loading citations…