Impact of Polypropylene Fibres on the Properties of Concrete

Year : 2024 | Volume : 14 | Issue : 03 | Page : 55 60
    By

    Neeti Mishra,

  1. Assistant Professor,, BBD University, Lucknow, Uttar Pradesh, India, ,

Abstract

This review paper explores the effects of polypropylene fibres on the mechanical and structural properties of concrete. The integration of short, discontinuous fibres into plain concrete enhances its post-cracking behavior and overall performance, with notable improvements in tensile strength, fracture strength, toughness, impact resistance, and flexural strength. These fibres effectively control crack propagation, increase energy absorption, and improve durability under varying loading conditions. A comprehensive analysis of prior research highlights key factors influencing the performance of fibre-reinforced concrete, such as fibre content, orientation, and distribution. Polypropylene fibres offer significant advantages in controlling shrinkage, reducing cracking, and enhancing long-term structural integrity. The study also examines the interactions between fibres and the cement matrix, providing insights into optimizing the mechanical behavior of concrete mixtures. The primary objective is to recommend strategies for the practical application of polypropylene fibres in concrete construction. This includes identifying optimal fibre dosages, mixing techniques, and application scenarios to maximize benefits. The findings address existing research gaps and propose directions for future studies to further advance fibre-reinforced concrete technologies. By enhancing understanding of polypropylene fibre use, this work aims to improve construction practices, promote sustainability, and support the development of resilient, high-performance concrete structures. The recommendations provided can serve as a foundation for adopting advanced materials in modern construction and infrastructure projects.

Keywords: Polypropylene fibres, concrete properties, tensile strength, fracture strength, toughness, impact resistance, flexural strength, mechanical properties

[This article belongs to Journal of Construction Engineering, Technology & Management ]

How to cite this article:
Neeti Mishra. Impact of Polypropylene Fibres on the Properties of Concrete. Journal of Construction Engineering, Technology & Management. 2024; 14(03):55-60.
How to cite this URL:
Neeti Mishra. Impact of Polypropylene Fibres on the Properties of Concrete. Journal of Construction Engineering, Technology & Management. 2024; 14(03):55-60. Available from: https://journals.stmjournals.com/jocetm/article=2024/view=193083


References

  1. Madhavi, T. C., Raju, L. S., & Mathur, D. (2014). Polypropylene fiber reinforced concrete-a review. International journal of emerging technology and advanced engineering, 4(4), 114–118.
  2. Mashrei, M. A., Sultan, A. A., & Mahdi, A. M. (2018). Effects of polypropylene fibers on compressive and flexural strength of concrete material.  J. Civ. Eng. Technol, 9(11), 2208–2217.
  3. Zhang, W., Kang, S., Huang, Y., & Liu, X. (2023). Behavior of reinforced concrete beams without stirrups and strengthened with basalt fiber–reinforced polymer sheets. Journal of Composites for Construction, 27(2), 04023007.
  4. Brown, R., Shukla, A., & Natarajan, K. R. (2002). Fiber reinforcement of concrete structures.
  5. Zhang, C., Kordestani, H., & Shadabfar, M. (2023). A combined review of vibration control strategies for high-speed trains and railway infrastructures: Challenges and solutions. Journal of Low Frequency Noise, Vibration and Active Control, 42(1), 272–291.
  6. Zeiml, M., Leithner, D., Lackner, R., & Mang, H. A. (2006). How do polypropylene fibers improve the spalling behavior of in-situ concrete?. Cement and concrete research, 36(5), 929–942.
  7. Madhavi, T. C., Reddy, M., Kumar, P., Raju, S., & Mathur, D. (2015). Behaviour of polypropylene fiber reinforced concrete. International Journal of Applied Engineering Research, 10(9), 22627–22638.
  8. Daniel, J. I., Ahmad, S. H., Arockiasamy, M., Ball, H. P., Batson, G. B., Criswell, M. E., … & Zollo, R. F. (2002). State-of-the-art report on fiber reinforced concrete reported by ACI Committee 544. ACI J, 96, 1–66.
  9. Latifi, M. R., Biricik, Ö., & Mardani Aghabaglou, A. (2022). Effect of the addition of polypropylene fiber on concrete properties. Journal of Adhesion Science and Technology, 36(4), 345–369.
  10. Bagherzadeh, R., Pakravan, H.R., Sadeghi, A., Latifi, M., & Merati, A.A. (2012). An Investigation on Adding Polypropylene Fibers to Reinforce Lightweight Cement Composites (LWC). Journal of Engineered Fibers and Fabrics, 7.
  11. Patel, M. J., & Kulkarni, S. M. (2013). Effect of polypropylene fiber on the high strength concrete. Journal of information, knowledge and research in civil engineering, 2(2), 125–129.
  12. Thirumurugan, S., & Sivakumar, A. (2013). Compressive strength index of crimped polypropylene fibres in high strength cementitious matrix. World Appl. Sci. J, 24(6), 698–702.
  13. Gencel, O., Ozel, C., Brostow, W., & Martínez-Barrera, G. (2011). Mechanical properties of self-compacting concrete reinforced with polypropylene fibres. Materials Research Innovations, 15(3), 216–225.
  14. Patel, P. A., Desai, A. K., & Desai, J. A. (2012). Evaluation of engineering properties for polypropylene fibre reinforced concrete. International Journal of Advanced Engineering Technology, 3(1), 42–45.
  15. Ahmed, S., Bukhari, I. A., Siddiqui, J. I., & Qureshi, S. A. (2006, August). A study on properties of polypropylene fiber reinforced concrete. In 31st conference on our world in concrete and structures(pp. 63–72).
  16. Murahari, K., & Rao, R. (2013). Effects of Polypropylene fibres on the strength properties Of fly ash based concrete. International Journal of Engineering Science Invention, 2(5), 13–19.
  17. Anbuvelan, K., Khadar, M. M., Lakshmipathy, M., & Sathyanarayanan, K. S. (2007). Studies on properties of concretes containing polypropylene, steel and reengineered plastic shred fibre. Indian concrete journal, 81(4), 38–44.
  18. Ramadevi, K., & Venkatesh Babu, D. L. (2012). Flexural behavior of hybrid (steel-polypropylene) fibre reinforced concrete beams. European Journal of Scientific Research, 70(1), 81–87.
  19. Prasad, M., Rajeev, C., & Rakesh, G. (2013). A comparative study of polypropylene fibre reinforced silica fume concrete with plain cement concrete. International Journal of Engineering Research and Science & Technology, 2(4), 127–136.
  20. Selvi, M. T., & Thandavamoorthy, T. S. (2013). Studies on the properties of steel and polypropylene fibre reinforced concrete without any admixture. International Journal of Engineering and Innovative Technology (IJEIT), 3(1), 411–416.
  21. Al-lami, K. A. (2015). Experimental investigation of fiber reinforced concrete beams(Master’s thesis, Portland State University).
  22. Yazıcı, Ş., İnan, G., & Tabak, V. (2007). Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC. Construction and Building Materials, 21(6), 1250-1253.
  23. Aulia, T. B. (2002). Effects of polypropylene fibers on the properties of high-strength concretes. Institutes for Massivbau and Baustoffechnologi, University Leipzig, Lacer, 7.
  24. Banthia, N., & Gupta, R. (2006). Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and concrete Research, 36(7), 1263–1267.
  25. Aly, T., Sanjayan, J. G., & Collins, F. (2008). Effect of polypropylene fibers on shrinkage and cracking of concretes. Materials and Structures, 41, 1741–1753.
  26. Lura, P., Pease, B., Mazzotta, G. B., Rajabipour, F., & Weiss, J. (2007). Influence of shrinkage-reducing admixtures on development of plastic shrinkage cracks. ACI materials journal, 104(2), 187.
  27. Wang, J., Dai, Q., Si, R., & Guo, S. (2019). Mechanical, durability, and microstructural properties of macro synthetic polypropylene (PP) fiber-reinforced rubber concrete. Journal of Cleaner Production, 234, 1351–1364.
  28. Mardani-Aghabaglou, A., İlhan, M., & Özen, S. (2019). The effect of shrinkage reducing admixture and polypropylene fibers on drying shrinkage behaviour of concrete. Cement-Wapno-Beton= Cement Lime Concrete, 24(3), 227–237.
  29. Song, P. S., Hwang, S., & Sheu, B. C. (2005). Strength properties of nylon-and polypropylene-fiber-reinforced concretes. Cement and concrete research, 35(8), 1546–1550.
  30. Christianto, H. A. (2004). Effect of chemical and mineral admixtures on the fresh properties of self compacting mortars(Master’s thesis, Middle East Technical University).
  31. Kakooei, S., Akil, H. M., Jamshidi, M., & Rouhi, J. (2012). The effects of polypropylene fibers on the properties of reinforced concrete structures. Construction and Building Materials, 27(1), 73–77.
  32. Varghese, A., N, A., Arulraj G, P., & Johnson Alengaram, U. (2019). Influence of fibers on bond strength of concrete exposed to elevated temperature. Journal of Adhesion Science and Technology, 33(14), 1521–1543.
  33. Noumowe, A. (2005). Mechanical properties and microstructure of high strength concrete containing polypropylene fibres exposed to temperatures up to 200 C. Cement and concrete research, 35(11), 2192–2198.
  34. Xiao, J., & Falkner, H. (2006). On residual strength of high-performance concrete with and without polypropylene fibres at elevated temperatures. Fire safety journal, 41(2), 115–121.
  35. Abaeian, R., Behbahani, H. P., & Moslem, S. J. (2018). Effects of high temperatures on mechanical behavior of high strength concrete reinforced with high performance synthetic macro polypropylene (HPP) fibres. Construction and Building Materials, 165, 631–638.
  36. Aygörmez, Y., Canpolat, O., Al-Mashhadani, M. M., & Uysal, M. (2020). Elevated temperature, freezing-thawing and wetting-drying effects on polypropylene fiber reinforced metakaolin based geopolymer composites. Construction and Building Materials, 235, 117502.

Regular Issue Subscription Review Article
Volume 14
Issue 03
Received 30/10/2024
Accepted 06/12/2024
Published 09/12/2024



My IP

PlumX Metrics