Advancing Gene Therapy: Next-Generation Viral Vector Engineering for Precision, Safety, and Scalability

Year : 2025 | Volume : 02 | Issue : 02 | Page : 1 9
    By

    Mehak Khanum,

  • Jennifer S,

  • Zaid Khan,

  • Ehsan Mohebi,

  1. Research Scholar, Department of Pharmaceutics, Faculty of Pharmacy, St Jhon’s Pharmacy College, Bangalore 560104, Karnataka, India
  2. Research Scholar, Department of Pharmaceutics, Faculty of Pharmacy, St Jhon’s Pharmacy College, Bangalore 560104, Karnataka, India
  3. Research Scholar, Pharm D, Intern, Department of Pharmacy Practice, Faculty of Pharmacy, Aditya Bangalore Institute of Pharmacy Education and Research, Bangalore, Karnataka, India
  4. Research Scholar, Pharm D, Intern, Department of Pharmacy Practice, Faculty of Pharmacy, Aditya Bangalore Institute of Pharmacy Education and Research, Bangalore, Karnataka, India

Abstract

Gene therapy has emerged as a paradigm-shifting modality for the treatment of genetic disorders, malignancies, and rare diseases through the delivery of therapeutic nucleic acids aimed at correcting or modulating dysfunctional gene expression. Among the various delivery systems, viral vectors including adeno-associated viruses (AAVs), lentiviruses, adenoviruses, retroviruses, and herpes simplex viruses have proven indispensable owing to their high transduction efficiencies and adaptability. This review offers a comprehensive assessment of viral vector optimization, tracing their historical development, identifying prevailing limitations, and highlighting recent advances in vector engineering. Critical barriers such as limited tissue specificity, immunogenic responses, cargo size restrictions, and challenges in large-scale production are systematically analyzed. Innovations in capsid engineering, the use of synthetic regulatory elements, and artificial intelligence (AI)-driven vector design are progressively mitigating these limitations, thereby enhancing vector safety, specificity, and therapeutic efficacy. Notable clinical successes, including Zolgensma for spinal muscular atrophy and Luxturna for inherited retinal dystrophies, underscore the clinical relevance of optimized vectors. The review also delineates a translational roadmap emphasizing the need for interdisciplinary collaboration, advanced biomanufacturing capabilities, and regulatory alignment to facilitate global accessibility and long-term clinical safety. Future perspectives include the integration of AI-assisted capsid design, CRISPR-based site-specific genome editing, and modular vector platforms to expedite the advancement of next-generation gene therapies.

Keywords: Gene therapy, Viral vectors, Vector engineering, Capsid modification, CRISPR integration, Immunogenicity, Biomanufacturing, AI in gene delivery

[This article belongs to International Journal of Virus Studies ]

How to cite this article:
Mehak Khanum, Jennifer S, Zaid Khan, Ehsan Mohebi. Advancing Gene Therapy: Next-Generation Viral Vector Engineering for Precision, Safety, and Scalability. International Journal of Virus Studies. 2025; 02(02):1-9.
How to cite this URL:
Mehak Khanum, Jennifer S, Zaid Khan, Ehsan Mohebi. Advancing Gene Therapy: Next-Generation Viral Vector Engineering for Precision, Safety, and Scalability. International Journal of Virus Studies. 2025; 02(02):1-9. Available from: https://journals.stmjournals.com/ijvs/article=2025/view=226832


References

  1. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358-378. doi:10.1038/s41573-019-0012-9
  2. Ginn SL, Amaya AK, Alexander IE, Edelstein M, Abedi MR. Gene therapy clinical trials worldwide to 2017: An update. J Gene Med. 2018;20(5):e3015. doi:10.1002/jgm.3015
  3. Naldini L. Gene therapy returns to centre stage. Nature. 2015;526(7573):351-360. doi:10.1038/nature15818
  4. High KA, Roncarolo MG. Gene therapy. N Engl J Med. 2019;381(5):455-464. doi:10.1056/NEJMra1706910
  5. Goswami R, Subramanian G, Silayeva L, et al. Gene therapy leaves a vicious cycle. Front Oncol. 2019;9:297. doi:10.3389/fonc.2019.00297
  6. Bulaklak K, Gersbach CA. The next generation of molecular and cellular therapies using CRISPR-Cas9. Mol Ther. 2020;28(4):947-960. doi:10.1016/j.ymthe.2020.02.001
  7. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583-593. doi:10.1128/CMR.00008-08
  8. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302(5644):415-419. doi:10.1126/science.1088547
  9. Russell S, Bennett J, Wellman JA, et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy. Lancet. 2017;390(10097):849-860. doi:10.1016/S0140-6736(17)31868-8
  10. Mendell JR, Al-Zaidy SA, Shell R, et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N Engl J Med. 2017;377(18):1713-1722. doi:10.1056/NEJMoa1706198
  11. Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6(2):42. doi:10.3390/diseases6020042
  12. Tabebordbar M, Lagerborg KA, Stanton A, et al. Directed evolution of a family of AAV capsid variants enabling potent muscle-directed gene delivery across species. Cell. 2021;184(19):4919-4938.e22. doi:10.1016/j.cell.2021.08.028
  13. Lee Y, Messing A, Su M, Brenner M. GFAP Promoter elements required for region-specific and astrocyte-specific expression. Glia. 2008;56(5):481-493. doi:10.1002/glia.20622
  14. Advances in AAV capsid engineering: Integrating rational design, directed evolution and machine learning. Mol Ther. 2025. doi:10.1016/j.ymthe.2024.11.012
  15. Optimization of AAV vectors to target persistent viral reservoirs. Virol J. 2021;18:85. doi:10.1186/s12985-021-01555-7
  16. Gonzalez TJ, Simon KE, Blondel LO, et al. Cross-species evolution of a highly potent AAV variant for therapeutic gene transfer and genome editing. Nat Commun. 2022;13:5947. doi:10.1038/s41467-022-33597-2
  17. Systematic multi-trait AAV capsid engineering for efficient gene delivery. Nat Commun. 2024;15:6667. doi:10.1038/s41467-024-50445-8
  18. Gray SJ, Matagne V, Bachaboina L, et al. Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther. 2011;22(9):1143-1153. doi:10.1089/hum.2010.245
  19. A Guide From AAV Vector Design to Quality Control. Atlantis Bioscience Pte Ltd. 2025. www.atlantisbioscience.com
  20. Next-generation AAV vectors do not judge a virus (only) by its cover. Hum Mol Genet. 2019;28(R1):R3-R14. doi:10.1093/hmg/ddz148
  21. Adeno-associated virus as a delivery vector for gene therapy of human diseases. Signal Transduct Target Ther. 2024;9:87. doi:10.1038/s41392-024-01767-1
  22. Akerblom M, Sachdeva R, Jakobsson J. miRNA-mediated post-transcriptional regulation in AAV-based gene therapy. Mol Ther. 2013;21(7):1473-1480. doi:10.1038/mt.2013.96
  23. Ronzitti G, Gross D-A, Mingozzi F. Human immune responses to adeno-associated virus (AAV) vectors. Front Immunol. 2020;11:670. doi:10.3389/fimmu.2020.00670
  24. Yao T, Zhou X, Zhang C, et al. Site-Specific PEGylated Adeno-Associated Viruses with Increased Serum Stability and Reduced Immunogenicity. Molecules. 2017;22(7):1155. doi:10.3390/molecules22071155
  25. Gao K, Li M, Zhong L, et al. Empty virions in AAV8 vector preparations reduce transduction efficiency and may cause total viral particle dose-limiting side-effects. Mol Ther Methods Clin Dev. 2014;1:20139. doi:10.1038/mtm.2014.39
  26. Mendell JR, Al-Zaidy SA, Rodino-Klapac LR, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29(2):464-488. doi:10.1016/j.ymthe.2020.12.007
  27. Pipe SW, Leebeek FWG, Recht M, et al. Hemgenix (etranacogene dezaparvovec) for hemophilia B: results from the HOPE-B phase 3 trial. Blood. 2022;140(Suppl 1):251-253. doi:10.1182/blood-2022-165987
  28. Mendell JR, Sahenk Z, Lehman K, et al. Elevidys (delandistrogene moxeparvovec) for Duchenne muscular dystrophy: phase 1/2 trial results. JAMA Neurol. 2023;80(8):815-823. doi:10.1001/jamaneurol.2023.1312
  29. Huang Q, Chan KY, Tobey IG, et al. An AAV capsid reprogrammed to bind human transferrin receptor mediates brain-wide gene delivery. Science. 2024;384(6699):eadm8386. doi:10.1126/science.adm8386
  30. Grieger JC, Soltys SM, Samulski RJ. Production of recombinant adeno-associated virus vectors using suspension HEK293 cells and continuous harvest of vector from the culture media for GMP FIX and FLT1 clinical vector. Mol Ther. 2016;24(2):287-297. doi:10.1038/mt.2015.187
  31. Xiao X, Li J, Samulski RJ. Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol. 1998;72(3):2224-2232. doi:10.1128/JVI.72.3.2224-2232.1998
  32. Nguyen TNT, Sha S, Hong MS, et al. Mechanistic model for production of recombinant adeno-associated virus via triple transfection of HEK293 cells. Mol Ther Methods Clin Dev. 2021;21:642-655. doi:10.1016/j.omtm.2021.03.006
  33. Thomas DL, Wang L, Niamke J, et al. Scalable recombinant adeno-associated virus production using recombinant herpes simplex virus type 1 coinfection of suspension-adapted mammalian cells. Hum Gene Ther. 2009;20(8):861-870. doi:10.1089/hum.2009.008
  34. Aslanidi G, Lamb K, Zolotukhin S. An inducible system for highly efficient production of recombinant adeno-associated virus (rAAV) vectors in insect Sf9 cells. Proc Natl Acad Sci U S A. 2009;106(13):5059-5064. doi:10.1073/pnas.0813414106
  35. Marwidi Y, Nguyen HB, Santos D, et al. A robust and flexible baculovirus-insect cell system for AAV vector production with improved yield, capsid ratios and potency. Mol Ther Methods Clin Dev. 2024;32(2):101228. doi:10.1016/j.omtm.2024.101228
  36. Chen H. Intron-mediated enhancement of recombinant adeno-associated virus production in insect cells. Mol Ther. 2012;20(5):1038-1045. doi:10.1038/mt.2012.9
  37. Mietzsch M, Grasse S, Zurawski C, et al. OneBac 2.0: Sf9 cell lines for production of AAV5 vectors with enhanced infectivity and minimal encapsidation of foreign DNA. Hum Gene Ther. 2015;26(10):688-697. doi:10.1089/hum.2015.050
  38. Smith RH, Levy JR, Kotin RM. A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther. 2009;20(8):1888-1896. doi:10.1038/mt.2009.128
  39. Emmerling VV, Pegel A, Milian EG, et al. Rational plasmid design and bioprocess optimization to enhance recombinant adeno-associated virus (AAV) productivity in mammalian cells. Biotechnol J. 2016;11(2):290-297. doi:10.1002/biot.201500176
  40. Dash S, Sharon DM, Mullick A, Kamen AA. Only a small fraction of cells produce assembled capsids during transfection-based manufacturing of adeno-associated virus vectors. Mol Ther Methods Clin Dev. 2022;27:297-306. doi:10.1016/j.omtm.2022.10.003
  41. Xue W, Buckingham A, Wang LS, et al. Adeno-associated virus perfusion enhanced expression: A commercially scalable, high titer, high quality producer cell line process. Mol Ther Methods Clin Dev. 2024;32(3):101283. doi:10.1016/j.omtm.2024.101283
  42. Clement N, Knop DR, Byrne BJ. Large-scale adeno-associated viral vector production using a herpes virus-based system enables manufacturing for clinical studies. Hum Gene Ther. 2009;20(8):796-806. doi:10.1089/hum.2009.094
  43. Kimura T, Ferran B, Tsukahara Y, et al. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci Rep. 2019;9(1):13601. doi:10.1038/s41598-019-49624-w
  44. Qu G, Bahr-Davidson J, Prado J, et al. Separation of adeno-associated virus type 2 empty particles from genome-containing vectors by anion-exchange chromatography. J Virol Methods. 2007;140(1-2):183-192. doi:10.1016/j.jviromet.2006.11.037
  45. Zolotukhin S, Byrne BJ, Mason E, et al. Recombinant adeno-associated virus purification using novel methods improves infectious titer and yield. Gene Ther. 1999;6(6):973-985. doi:10.1038/sj.gt.3300938
  46. Lock M, Alvira MR, Chen SJ, Wilson JM. Absolute determination of single-stranded and self-complementary adeno-associated viral vector genome titers by droplet digital PCR. Hum Gene Ther Methods. 2014;25(2):115-125. doi:10.1089/hgtb.2013.131
  47. Sommer JM, Smith PH, Parthasarathy S, et al. Quantification of adeno-associated virus particles and empty capsids by optical density measurement. Mol Ther. 2003;7(1):122-128. doi:10.1016/s1525-0016(02)00039-9
  48. Nass SA, Mattingly MA, Woodcock DA, et al. Universal method for the purification of recombinant AAV vectors of differing serotypes. Mol Ther Methods Clin Dev. 2018;9:33-46. doi:10.1016/j.omtm.2017.12.006
  49. Wright JF. Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther. 2008;15(11):840-848. doi:10.1038/gt.2008.65
  50. Allay JA, Sleep S, Long S, et al. Good manufacturing practice production of self-complementary serotype 8 adeno-associated viral vector for a hemophilia B clinical trial. Hum Gene Ther. 2011;22(5):595-604. doi:10.1089/hum.2010.202
  51. Strobel B, Düchs MJ, Blazevic D, et al. Standardized, scalable, and timely flexible adeno-associated virus vector production using frozen high-density HEK-293 cell stocks and CELLdisc culture vessels. Hum Gene Ther Methods. 2019;30(1):23-33. doi:10.1089/hgtb.2018.173
  52. Wang L, Bell P, Lin J, et al. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358-378. doi:10.1038/s41573-019-0012-9
  53. Srivastava A. In vivo tissue-tropism of adeno-associated viral vectors. Curr Opin Virol. 2016;21:75-80. doi:10.1016/j.coviro.2016.08.002
  54. Wu Z, Yang H, Colosi P. Effect of genome size on AAV vector packaging. Mol Ther. 2010;18(1):80-86. doi:10.1038/mt.2009.255
  55. Penaud-Budloo M, Le Guiner C, Nowrouzi A, et al. Assessment of AAV vector genome fate in a large animal model. Hum Gene Ther. 2018;29(5):492-504. doi:10.1089/hum.2017.199
  56. Xie Q, Lerch TF, Meyer NL, Chapman MS. Structure-function analysis of adeno-associated virus serotypes. J Virol. 2011;85(17):7789-7801. doi:10.1128/JVI.00518-11
  57. Dismuke DJ, Tenenbaum L, Samulski RJ. Biosafety of recombinant adeno-associated virus vectors. Curr Gene Ther. 2013;13(6):434-452. doi:10.2174/1566523213666131125144639
  58. Ayuso E, Mingozzi F, Bosch F. Production, purification and characterization of adeno-associated vectors. Curr Gene Ther. 2010;10(6):423-436. doi:10.2174/156652310793360867
  59. Hastie E, Samulski RJ. Optimizing adeno-associated virus vectors for gene therapy: advances and challenges. Nat Rev Drug Discov. 2015;14(10):661-677. doi:10.1038/nrd4662
  60. Paulk NK, Loza LM, Finegold MJ, et al. AAV-mediated gene therapy for liver disease: progress and challenges. Hum Gene Ther. 2013;24(11):948-960. doi:10.1089/hum.2013.108
  61. Gao GP, Alvira MR, Wang L, et al. Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy. Proc Natl Acad Sci U S A. 2002;99(18):11854-11859. doi:10.1073/pnas.182412299
  62. Vandenberghe LH, Wilson JM, Gao G. Tailoring the AAV vector capsid for gene therapy. Gene Ther. 2009;16(3):311-319. doi:10.1038/gt.2008.170
  63. Castle MJ, Perlson E, Holzbaur ELF, Wolfe JH. Long-distance axonal transport of AAV9 is driven by dynein and kinesin-2 and has implications for gene therapy. Mol Ther. 2014;22(3):554-566. doi:10.1038/mt.2013.284
  64. Samaranch L, Salegio EA, San Sebastian W, et al. AAV9-mediated expression of a non-self protein in nonhuman primate central nervous system triggers widespread neuroinflammation driven by antigen-presenting cell transduction. Mol Ther. 2014;22(2):329-337. doi:10.1038/mt.2013.274
  65. Keiser NW, Yan Z, Zhang Y, et al. Gene therapy for inherited metabolic disorders: progress and challenges. J Genet Syndr Gene Ther. 2011;2(4):1000115. doi:10.4172/2157-7412.1000115
  66. Colella P, Ronzitti G, Mingozzi F. Emerging issues in AAV-mediated in vivo gene therapy. Mol Ther Methods Clin Dev. 2018;8:87-104. doi:10.1016/j.omtm.2017.11.007
  67. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18(5):358-378. doi:10.1038/s41573-019-0012-9
  68. Deverman BE, Pravdo PL, Simpson BP, et al. Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol. 2016;34(2):204-209. doi:10.1038/nbt.3440
  69. Bartel MA, Weinstein JR, Schaffer DV. Directed evolution of novel adeno-associated viruses for therapeutic gene delivery. Gene Ther. 2012;19(6):694-700. doi:10.1038/gt.2012.22
  70. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet. 2020;21(4):255-272. doi:10.1038/s41576-019-0205-4
  71. Chen X, Zaro JL, Shen WC. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65(10):1357-1369. doi:10.1016/j.addr.2012.09.039
  72. Lecomte E, Touraille S, Richard E, et al. Characterization of AAV vector production in a single-use bioreactor: a step toward large-scale manufacturing. Biotechnol Bioeng. 2015;112(7):1256-1266. doi:10.1002/bit.25559
  73. Penaud-Budloo M, François A, Clément N, Ayuso E. Pharmacology of recombinant adeno-associated virus production. Mol Ther Methods Clin Dev. 2018;8:166-180. doi:10.1016/j.omtm.2017.11.010
  74. Rafiq QA, Hewitt CJ. Cell culture bioprocessing for recombinant adeno-associated virus production: challenges and opportunities. Curr Opin Chem Eng. 2015;10:71-76. doi:10.1016/j.coche.2015.08.004
  75. O’Riordan CR, Lachapelle A, Delgado C, et al. Adenovirus production and purification. Methods Mol Biol. 2005;246:121-138. doi:10.1385/1-59259-800-6:121
  76. Salganik M, Hirsch ML, Samulski RJ. Adeno-associated virus as a mammalian DNA vector. Microbiol Spectr. 2015;3(4):MDNA3-0053-2014. doi:10.1128/microbiolspec.MDNA3-0053-2014
  77. Penaud-Budloo M, Le Guiner C, Nowrouzi A, et al. Challenges in AAV vector development and manufacturing. J Gene Med. 2018;20(3):e3010. doi:10.1002/jgm.3010
  78. Pacouret S, Bouzelha M, Shelke R, et al. AAV-ID: a rapid and robust assay for batch-to-batch consistency evaluation of AAV preparations. Mol Ther. 2017;25(6):1375-1386. doi:10.1016/j.ymthe.2017.03.026
  79. Hauck B, Zhao W, High K, Xiao W. Intracellular trafficking of adeno-associated virus vectors: challenges and strategies. Gene Ther. 2004;11 Suppl 1:S23-S30. doi:10.1038/sj.gt.3302377
  80. Wang X, Wang L, Cong P, et al. Safety and immunogenicity of adeno-associated virus vectors in large animal models. Front Immunol. 2021;12:621207. doi:10.3389/fimmu.2021.621207
  81. Wang M, Glass Z, Xu Q. Non-viral delivery of CRISPR–Cas gene editing components for therapeutic applications. Chem Rev. 2021;121(3):1183-1223. doi:10.1021/acs.chemrev.0c00719
  82. Snyder RO, Miao CH, Meuse L, et al. Correction of hemophilia B in canine and murine models using recombinant AAV vectors. Nat Med. 1999;5(1):64-70. doi:10

Regular Issue Subscription Review Article
Volume 02
Issue 02
Received 07/07/2025
Accepted 29/07/2025
Published 02/08/2025
Publication Time 26 Days



My IP

PlumX Metrics