This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Safiya Sajid,
- Student, Department of Pharmacy, Prasad Institute of Technology, Jaunpur,, Uttar Pradesh, India
Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_112650’);});Edit Abstract & Keyword
RNA interference (RNAi) is a ground breaking therapeutic strategy that holds immense promise for targeting viral genes in the treatment of viral infections. This approach leverages the natural gene-silencing mechanisms of RNAi to inhibit viral replication and expression at the molecular level, providing a precise and adaptable method to counteract viral pathogens, including influenza, HIV, and hepatitis viruses. Recent advancements in RNAi technology have enabled the development of highly specific small interfering RNAs (siRNAs) and microRNAs (miRNAs) that can selectively target and degrade viral mRNA, impeding the virus’s life cycle. However, challenges in effective delivery, off-target effects, and immune response activation remain barriers to clinical implementation. This review examines the molecular mechanisms underlying RNAi, explores current advancements in RNAi delivery systems, and evaluates its therapeutic potential and limitations as an antiviral approach. Additionally, we highlight the future directions of RNAi, emphasizing the integration with complementary therapies, such as CRISPR gene editing, to enhance its efficacy and applicability in treating viral infections
Keywords: RNA interference (RNAi), Antiviral therapy, Viral gene targeting, Small interfering RNA (siRNA), MicroRNA (miRNA), Gene silencing, RNAi delivery systems, Viral infections, CRISPR/Cas9, Immunogenicity
[This article belongs to International Journal of Virus Studies (ijvs)]
Safiya Sajid. Development of a Novel Therapeutic Approach Using RNA Interference for Targeting Viral Genes. International Journal of Virus Studies. 2024; 01(02):-.
Safiya Sajid. Development of a Novel Therapeutic Approach Using RNA Interference for Targeting Viral Genes. International Journal of Virus Studies. 2024; 01(02):-. Available from: https://journals.stmjournals.com/ijvs/article=2024/view=0
References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_112650’);});Edit
- Agrawal S, Kandimalla ER. Antisense and siRNA as agonists of Toll-like receptors. Nature biotechnology. 2004 Dec;22(12):1533-7.
- Campbell TN, Choy FY. RNA interference: past, present and future. Current issues in molecular biology. 2005 Jan;7(1):1-6.
- World Health Organization. Global hepatitis report 2017. World Health Organization; 2017.
- Dyawanapelly S, Ghodke SB, Vishwanathan R, Dandekar P, Jain R. RNA interference-based therapeutics: molecular platforms for infectious diseases. Journal of Biomedical Nanotechnology. 2014 Sep 1;10(9):1998-2037.
- Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. nature. 1998 Feb 19;391(6669):806-11.
- Tiemann K, Rossi JJ. RNAi‐based therapeutics–current status, challenges and prospects. EMBO molecular medicine. 2009 Jun 12;1(3):142-51.
- Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nature Reviews Genetics. 2007 Mar;8(3):173-84.
- Dong Y, Siegwart DJ, Anderson DG. Strategies, design, and chemistry in siRNA delivery systems. Advanced drug delivery reviews. 2019 Apr 1;144:133-47.
- Ghosal A, Kabir AH, Mandal A. RNA interference and its therapeutic potential. Central European journal of medicine. 2011 Apr;6:137-47.
- Muthiah M, Park IK, Cho CS. Nanoparticle-mediated delivery of therapeutic genes: focus on miRNA therapeutics. Expert opinion on drug delivery. 2013 Sep 1;10(9):1259-73.
- Lopez-Fraga M, Wright N, Jimenez A. RNA interference-based therapeutics: new strategies to fight infectious disease. Infectious Disorders-Drug Targets (Formerly Current Drug Targets-Infectious Disorders). 2008 Dec 1;8(4):262-73.
- Lund E, Dahlberg JE. Substrate selectivity of exportin 5 and Dicer in the biogenesis of microRNAs. InCold Spring Harbor symposia on quantitative biology 2006 Jan 1 (Vol. 71, pp. 59-66). Cold Spring Harbor Laboratory Press.
- Ambesajir A, Kaushik A, Kaushik JJ, Petros ST. RNA interference: A futuristic tool and its therapeutic applications. Saudi journal of biological sciences. 2012 Oct 1;19(4):395-403.
- Nikam RR, Gore KR. Journey of siRNA: clinical developments and targeted delivery. Nucleic acid therapeutics. 2018 Aug 1;28(4):209-24.
- Karagiannis TC, El-Osta A. RNA interference and potential therapeutic applications of short interfering RNAs. Cancer Gene Therapy. 2005 Oct;12(10):787-95.
- Deng Y, Wang CC, Choy KW, Du Q, Chen J, Wang Q, Li L, Chung TK, Tang T. Therapeutic potentials of gene silencing by RNA interference: principles, challenges, and new strategies. Gene. 2014 Apr 1;538(2):217-27.
- Wang W, Sun L, Huang MT, Quan Y, Jiang T, Miao Z, Zhang Q. Regulatory circular RNAs in viral diseases: applications in diagnosis and therapy. RNA biology. 2023 Dec 31;20(1):847-58.
- Haussecker D. Current issues of RNAi therapeutics delivery and development. Journal of controlled release. 2014 Dec 10;195:49-54.
- Ma Y, Chan CY, He ML. RNA interference and antiviral therapy. World Journal of Gastroenterology: WJG. 2007 Oct 10;13(39):5169.
| Volume | 01 |
| Issue | 02 |
| Received | 27/10/2024 |
| Accepted | 29/10/2024 |
| Published | 12/11/2024 |
function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}

