Investigating the Impact of Viral Infections on Pharmacokinetics and Pharmacodynamics of Antiviral Drugs

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2024 | Volume :01 | Issue : 02 | Page : –
By
vector

Anand Prakash,

  1. Student, Department. of Pharmacy, S.N. College of Pharmacy, Jaunpur, Uttar Pradesh, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_112672’);});Edit Abstract & Keyword

The emergence and re-emergence of viral infections pose significant challenges to public health, necessitating a comprehensive understanding of how these infections impact the pharmacokinetics and pharmacodynamics of antiviral drugs. This review explores the intricate interactions between viral pathophysiology and the pharmacological effects of antiviral agents. Factors such as viral replication dynamics, host immune responses, and the genetic variability of both viruses and hosts significantly influence drug absorption, distribution, metabolism, and excretion. Furthermore, the review highlights the clinical implications of these interactions, including the emergence of drug resistance and the variability in therapeutic outcomes among patients. This article aims to synthesize current knowledge on these interactions, providing insights into future directions for antiviral drug development and clinical practice. The incorporation of novel techniques such as CRISPR-based antiviral therapies, broad-spectrum antivirals, and AI-driven drug discovery could lead to transformative changes in the management of viral diseases, allowing for more resilient and flexible antiviral regimens. Future research and development efforts must continue to integrate these innovations while addressing the dynamic nature of viral pathogens and the growing prevalence of drug resistance.

Keywords: Antiviral drugs, pharmacokinetics, pharmacodynamics, viral infections, drug resistance, precision medicine, pharmacogenomics, drug delivery systems,host-pathogen interactions, therapeutic outcomes

[This article belongs to International Journal of Virus Studies (ijvs)]

How to cite this article:
Anand Prakash. Investigating the Impact of Viral Infections on Pharmacokinetics and Pharmacodynamics of Antiviral Drugs. International Journal of Virus Studies. 2024; 01(02):-.
How to cite this URL:
Anand Prakash. Investigating the Impact of Viral Infections on Pharmacokinetics and Pharmacodynamics of Antiviral Drugs. International Journal of Virus Studies. 2024; 01(02):-. Available from: https://journals.stmjournals.com/ijvs/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_112672’);});Edit

  1. De Clercq, E., & Li, G. (2016). Approved antiviral drugs over the past 50 years. Clinical Microbiology Reviews, 29(3), 695-747.
  2. Gu SX, Zhu YY, Wang C, Wang HF, Liu GY, Cao S, Huang L. Recent discoveries in HIV-1 reverse transcriptase inhibitors. Current Opinion in Pharmacology. 2020 Oct 1;54:166-72.
  3. Zeitlinger M, Koch BC, Bruggemann R, De Cock P, Felton T, Hites M, Le J, Luque S, MacGowan AP, Marriott DJ, Muller AE. Pharmacokinetics/pharmacodynamics of antiviral agents used to treat SARS-CoV-2 and their potential interaction with drugs and other supportive measures: a comprehensive review by the PK/PD of Anti-Infectives Study Group of the European Society of Antimicrobial Agents. Clinical pharmacokinetics. 2020 Oct;59:1195-216.
  4. Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infectious Disease Clinics. 2010 Sep 1;24(3):809-33.
  5. Shafer RW, Najera I, Chou S. Mechanisms of resistance to antiviral agents. Manual of clinical microbiology. 2011 May 16:1710-28.
  6. Gomes MJ, Neves JD, Sarmento B. Nanoparticle-based drug delivery to improve the efficacy of antiretroviral therapy in the central nervous system. International journal of nanomedicine. 2014 Apr 7:1757-69.
  7. Kumar N, Sharma S, Kumar R, Tripathi BN, Barua S, Ly H, Rouse BT. Host-directed antiviral therapy. Clinical microbiology reviews. 2020 Jun 17;33(3):10-128.
  8. Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: Opportunities and challenges. Drug Resistance Updates. 2024 Jan 26:101053.
  9. Adalja A, Inglesby T. Broad-spectrum antiviral agents: a crucial pandemic tool. Expert review of Anti-infective Therapy. 2019 Jul 3;17(7):467-70.
  10. Jana S, Mandlekar S, Marathe P. Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Current medicinal chemistry. 2010 Nov 1;17(32):3874-908.
  11. Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and precision medicine approaches for the improvement of COVID-19 therapies. Frontiers in pharmacology. 2022 Feb 18;13:835136.
  12. Bayat H, Naderi F, Khan AH, Memarnejadian A, Rahimpour A. The impact of CRISPR-Cas system on antiviral therapy. Advanced Pharmaceutical Bulletin. 2018 Nov;8(4):591.
  13. Rider TH, Zook CE, Boettcher TL, Wick ST, Pancoast JS, Zusman BD. Broad-spectrum antiviral therapeutics. PloS one. 2011 Jul 27;6(7):e22572.
  14. Du S, Hu X, Menéndez-Arias L, Zhan P, Liu X. Target-based drug design strategies to overcome resistance to antiviral agents: Opportunities and challenges. Drug Resistance Updates. 2024 Jan 26:101053.
  15. Lorenzi P, Opravil M, Hirschel B, Chave JP, Furrer HJ, Sax H, Perneger TV, Perrin L, Kaiser L, Yerly S, Swiss HIV Cohort Study. Impact of drug resistance mutations on virologic response to salvage therapy. Aids. 1999 Feb 4;13(2):F17-21.
  16. Drusano GL, Preston SL, Piliero PJ. Pharmacodynamics of antivirals. InAntimicrobial pharmacodynamics in theory and clinical practice 2001 Sep 25 (pp. 271-296). CRC Press.
  17. Dickinson L, Khoo S, Back D. Pharmacokinetics and drug–drug interactions of antiretrovirals: an update. Antiviral research. 2010 Jan 1;85(1):176-89.
  18. Bollinger RC, Thio CL, Sulkowski MS, McKenzie-White J, Thomas DL, Flexner C. Addressing the global burden of hepatitis B virus while developing long-acting injectables for the prevention and treatment of HIV. The lancet HIV. 2020 Jun 1;7(6):e443-8.

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received 27/10/2024
Accepted 10/09/2024
Published 12/11/2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}