Ramdas Bhat,
Preeti Shanbhag,
Sinchana S Bhat,
Megha M,
Kavana D K,
Rithin K,
- Associate Professor, Department of Pharmacology,Srinivas College of Pharmacy, Mangalore, India
- PG Scholar, Department of Pharmacology,Srinivas College of Pharmacy, Mangalore, India
- UG Scholar, Department of Pharmacology,Srinivas College of Pharmacy, Mangalore, India
- UG Scholar, Department of Pharmacology,Srinivas College of Pharmacy, Mangalore, India
- UG Scholar, Department of Pharmacology,Srinivas College of Pharmacy, Mangalore, India
- UG Scholar, Department of Pharmacology,Srinivas College of Pharmacy, Mangalore, India
Abstract
Genetic engineering techniques, including recombinant subunit, viral vector, and nucleic acid vaccines have transformed the landscape of vaccine development. These novel approaches offer precise antigen design, enhanced safety profiles, and rapid adaptability to emerging pathogens. Key advantages include improved efficacy through targeted immune responses, increased safety due to the absence of live pathogens, and the ability to modify vaccines to address new variants or diseases quickly. Notable success stories, such as the hepatitis B vaccine and the recent mRNA-based COVID-19 vaccines, demonstrate the transformative potential of this technology. However, challenges persist in areas of production scalability, regulatory approval processes, and public perception. The effectiveness and broad acceptance of genetically modified vaccinations depend on resolving these problems. The field holds promising prospects for personalized vaccines tailored to individual genetic profiles, universal flu vaccines targeting conserved viral regions, and therapeutic vaccines for chronic diseases. As genetic engineering techniques continue to evolve, they have the potential to dramatically reshape our approach to disease prevention and treatment. This review explores the transition from conventional vaccine approaches to genetically engineered methods, examining their advantages, challenges, and future prospects. It aims to provide a comprehensive overview of how genetic engineering is revolutionizing vaccine development, offering hope for more effective, accessible, and adaptable solutions to global health challenges in the 21st century and beyond.
Keywords: Genetic engineering, global health, mRNA, personalized medicine, vaccines, viral vectors.
[This article belongs to International Journal of Vaccines ]
Ramdas Bhat, Preeti Shanbhag, Sinchana S Bhat, Megha M, Kavana D K, Rithin K. The Power of Genetic Engineering in Revolutionizing Vaccines. International Journal of Vaccines. 2024; 02(01):18-27.
Ramdas Bhat, Preeti Shanbhag, Sinchana S Bhat, Megha M, Kavana D K, Rithin K. The Power of Genetic Engineering in Revolutionizing Vaccines. International Journal of Vaccines. 2024; 02(01):18-27. Available from: https://journals.stmjournals.com/ijv/article=2024/view=180465
References
- History of Smallpox | Smallpox | CDC [Internet]. www.cdc.gov. 2019.[cited 2024] Available from: https://www.cdc.gov/smallpox/history/history.html#:~:text=The%20basis%20for%20vaccination%20began.
- Montero DA, Vidal RM, Velasco J, Carreño LJ, Torres JP, Benachi MA, et al. Two centuries of vaccination: historical and conceptual approach and future perspectives. Front Public Health. 2023;11. doi:10.3389/fpubh.2023.1326154.
- Pattyn J, Hendrickx G, Vorsters A, Van Damme P. Hepatitis B vaccines. J Infect Dis. 2021;224(S4):343–351. doi:10.1093/infdis/jiaa668.
- Al Fayez N, Nassar MS, Alshehri AA, Alnefaie MK, Almughem FA, Alshehri BY, et al. Recent advancement in mRNA vaccine development and applications. Pharmaceutics. 2023;15(7):1972. doi:10.3390/pharmaceutics15071972.
- Rando HM, Lordan R, Lee AJ, Naik A, Wellhausen N, Sell E. Application of traditional vaccine development strategies to SARS-CoV-2. ASM J. 2023;8(2):e00927-22. doi:10.1128/msystems.00927-22.
- Schlake T, Thess A, Fotin-Mleczek M, Kallen K-J. Developing mRNA-vaccine technologies. RNA Biol. 2012;9(11):1319–1330. doi:10.4161/rna.22269.
- Gebre MS, Brito LA, Tostanoski LH, Edwards DK, Carfi A, Barouch DH. Novel approaches for vaccine development. Cell. 2021;184(6):1589–1603. doi:10.1016/j.cell.2021.02.030.
- Types of Vaccine. India Science, Technology & Innovation – ISTI Portal [Online]. indiascienceandtechnology.gov.in. Available from: https://www.indiascienceandtechnology.gov.in/covid-19-vaccine/types-vaccine.
- Minor PD. Live attenuated vaccines: historical successes and current challenges. Virol. 2015;479–480:379–392. doi:10.1016/j.virol.2015.03.032.
- Kennedy RB, Ovsyannikova IG, Palese P, Poland GA. Current challenges in vaccinology. Front Immunol. 2020;11:1181. doi:10.3389/fimmu.2020.01181.
- Kozak M, Hu J. DNA vaccines: their formulations, engineering and delivery. Vaccines. 2024;12(1):71. doi:10.3390/vaccines12010071.
- Daniali M, Mousavi T, Abdollahi M. Biological Products in Medicine. In: Encyclopedia of Toxicology. 2nd edition. Amsterdam: Elsevier; 2024. 117–132.
- Jain S, Venkataraman A, Wechsler ME, Peppas NA. Messenger RNA-based vaccines: past, present, and future directions in the context of the COVID-19 pandemic. Adv Drug Deliv Rev. 2021;179:114000. doi:10.1016/j.addr.2021.114000.
- Matić Z, Šantak M. Current view on novel vaccine technologies to combat human infectious diseases. Appl Microbiol Biotechnol. 2022;106:25–56. doi:10.1007/s00253-021-11713-0.
- Ghattas M, Dwivedi G, Lavertu M, Alameh MG. Vaccine technologies and platforms for infectious diseases: current progress, challenges, and opportunities. Vaccines. 2021;9(12):1490. doi:10.3390/vaccines9121490.
- Zahedipour F, Zahedipour F, Zamani P, Jaafari MR, Sahebkare A. Harnessing CRISPR technology for viral therapeutics and vaccines: from preclinical studies to clinical applications. Virus Res. 2024;341:199314. doi:10.1016/j.virusres.2024.199314.
- Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, et al. Nanoparticle-based delivery systems for vaccines. Vaccines. 2022;10(11):1946. doi:10.3390/vaccines10111946.
- Khan S, Ullah MW, Siddique R, Nabi G, Manan S, Yousaf M, et al. Role of recombinant DNA technology to improve life. J Genet Eng Biotechnol. 2016;14(1):17. doi:10.1155/2016/2405954.
- Murray K, Stahl S, Ashton-Rickardt PG. Genetic engineering applied to the development of vaccines. Philos Trans R Soc Lond B Biol Sci. 1989 ;324(1224):31. doi:10.1098/rstb.1989.0060.
- Hogan MJ, Pardi N. mRNA vaccines in the COVID-19 pandemic and beyond. Annu Rev Med. 2022;73:17–39. doi:10.1146/annurev-med-042420-112725.
- Deng S, Liang H, Chen P, Li Y, Li Z, Fan S, et al. Viral vector vaccine development and application during the COVID-19 pandemic. Vaccines. 2022;10(7):1450. doi:10.3390/
- Joudeh AI, Lutf AQ, Mahdi S, Tran G. Efficacy and safety of mRNA and AstraZeneca COVID-19 vaccines in patients with autoimmune rheumatic diseases: A systematic review. Vaccine. 2023;41(26):3801–3812. doi:10.1016/j.vaccine.2023.05.048.
- Lee J, Kumar SA, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater. 2018;15(80):31–47. doi:10.1016/j.actbio.2018.08.033.
- Das S, Kar SS, Samanta S, Banerjee J, Giri B, Dash SK. Immunogenic and reactogenic efficacy of Covaxin and Covishield: a comparative review. Immunol Res. 2022;70(3):289–315. doi:10.1007/s12026-022-09265-0.
- McCullers JA, Dunn JD. Advances in vaccine technology and their impact on managed care. Pharm Ther. 2008;33(1):35.
- Zhao H, Zhou X, Zhou YH. Hepatitis B vaccine development and implementation. Hum Vaccin Immunother. 2020;16(7):1533–1544. doi:10.1080/21645515.2020.1732166.
- Flores JE, Thompson AJ, Ryan M, Howell J. The global impact of hepatitis B vaccination on hepatocellular carcinoma. Vaccines. 2022;10(5):793. doi:10.3390/vaccines10050793.
- Al-Busafi SA, Alwassief A. Global perspectives on the hepatitis B vaccination: challenges, achievements, and the road to elimination by 2030. Vaccines. 2024;12(3):288. doi:10.3390/vaccines12030288.
- Dhalaria P, Kapur S, Singh AK, Verma A, Priyadarshini P, Taneja G. Potential impact of rotavirus vaccination on reduction of childhood diarrheal disease in India: An analysis of National Family Health Survey-5. Vaccine: X. 2023;14:100319. doi:10.1016/j.jvacx.2023.100319.
- Cárcamo-Calvo R, Muñoz C, Buesa J, Rodríguez-Díaz J, Gozalbo-Rovira R. The rotavirus vaccine landscape, an update. Pathogens. 2021;10(5):520. doi:10.3390/pathogens10050520.
- Burnett E, Parashar U, Tate J. Rotavirus vaccines: effectiveness, safety, and future directions. Pediatr Drugs. 2018;20:223–233. doi:10.1007/s40272-018-0283-3.
- Chen WH, Strych U, Bottazzi ME, Lin YP. Past, present, and future of Lyme disease vaccines: antigen engineering approaches and mechanistic insights. Expert Rev Vaccines. 2022;21(10):1405–1417. doi:10.1080/14760584.2022.2102484.
- Pine M, Arora G, Hart TM, Bettini E, Gaudette BT, Muramatsu H, et al. Development of an mRNA-lipid nanoparticle vaccine against Lyme disease. Mol Ther. 2023;31(9):2702–2714. doi:10.1016/j.ymthe.2023.07.022.
- Gomes-Solecki M, Arnaboldi PM, Backenson PB, Benach JL, Cooper CL, Dattwyler RJ, et al. Protective immunity and new vaccines for Lyme disease. Clin Infect Dis. 2020;70(8):1768–1773. doi:10.1093/cid/ciz872.
- Cooper A, Sidaway A, Chandrashekar A, Latta E, Chakraborty K, Yu J, et al. A genetically engineered, stem-cell-derived cellular vaccine. Cell Rep Med. 2022;3(12):100843. doi:10.1016/j.xcrm.2022.100843.
- Grohskopf LA. Prevention and control of seasonal influenza with vaccines: Recommendations of the advisory committee on immunization practices—United States, 2024–25 influenza season. MMWR. Recommendations and Reports. 2024;73.
- Chavda VP, Jogi G, Dave S, Patel BM, Vineela Nalla L, Koradia K. mRNA-Based Vaccine for COVID-19: They are new but not unknown. Vaccines. 2023;11(3):507. doi:10.3390/vaccines
- Park HJ, Bang YJ, Kwon SP, Kwak W, Park SI, Roh G, et al. Analyzing immune responses to varied mRNA and protein vaccine sequences. Vaccines. 2023;8(1):84. doi:10.1038/s41541-023-00684-0.
- Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, et al. Adenoviral vector-based vaccine platform for COVID-19: current status. Vaccines. 2023;11(2):432. doi:10.3390/vaccines
- Ma KC, Surie D, Lauring AS, Martin ET, Leis AM, Papalambros L. et al. Effectiveness of updated 2023–2024 (Monovalent XBB. 1.5) COVID-19 Vaccination Against SARS-CoV-2 Omicron XBB and BA. 2.86/JN. 1 Lineage Hospitalization and a Comparison of Clinical Severity—IVY Network, 26 Hospitals, medRxiv. 2024:2024-06. Clin Infect Dis. 2024. doi:10.1093/cid/ciae405.
- Brisse M, Vrba SM, Kirk N, Liang Y, Ly H. Emerging concepts and technologies in vaccine development. Front Immunol. 2020;11. doi:10.3389/fimmu.2020.583077.
- Blenke EO, Örnskov E, Schöneich C, Nilsson GA, Volkin DB, Mastrobattista E, et al. The storage and in-use stability of mRNA vaccines and therapeutics: not a cold case. J Pharm Sci. 2023;112(2):386–403. doi:10.1016/j.xphs.2022.11.001.
- Mennella C, Maniscalco U, De Pietro G, Esposito M. Ethical and regulatory challenges of AI technologies in healthcare: A narrative review. Heliyon. 2024;10(4):e26297. doi:10.1016/j.heliyon.
e26297. - Galagali PM, Kinikar AA, Kumar VS. Vaccine hesitancy: obstacles and challenges. Curr Pediatr Rep. 2022;10(4):241–248. doi:10.1007/s40124-022-00278-9.
- Bang Petersen M, Bor A, Jørgensen F, Lindholt MF. Transparent communication about negative features of COVID-19 vaccines decreases acceptance but increases trust. Proc Natl Acad Sci U S A. 2021;118(29):e2024597118. doi:10.1073/pnas.2024597118.
International Journal of Vaccines
Volume | 02 |
Issue | 01 |
Received | 15/10/2024 |
Accepted | 25/10/2024 |
Published | 29/10/2024 |
Publication Time | 14 Days |