Innovative Vaccine Technologies: Current Landscape and Future Prospects in Preventive Medicine

Year : 2024 | Volume :01 | Issue : 02 | Page : 07-15

Satish Kumar Sarankar

Santosh Ojha

Brajesh Rajak

Sushma Somkuwar


This review article presents a comprehensive analysis of recent advancements and emerging trends in vaccine development, offering insights into the dynamic landscape of preventive medicine. Delving into a spectrum of infectious diseases, including influenza, HIV/AIDS, malaria, tuberculosis, respiratory syncytial virus (RSV), Group B Streptococcus (GBS), norovirus, and chikungunya, the review highlights innovative approaches and breakthroughs in vaccine technology. It explores efforts to develop universal influenza vaccines, long-awaited HIV vaccines, and next-generation malaria and tuberculosis vaccines. Additionally, the review examines ongoing clinical trials for RSV, GBS, norovirus, and chikungunya vaccines, emphasizing the importance of targeting vulnerable populations and addressing global health challenges. Furthermore, the review discusses the implications of precision vaccinology, immunoengineering, and equitable vaccine distribution in shaping the future of public health. By synthesizing diverse perspectives and recent research findings, this article contributes to the discourse on vaccine innovation and underscores the critical role of vaccines in disease prevention and global health security.

Keywords: Vaccine, mRNA, Viral Vectors, Immunoengineering, Infectious Disease

[This article belongs to International Journal of Vaccines(ijv)]

How to cite this article: Satish Kumar Sarankar, Santosh Ojha, Brajesh Rajak, Sushma Somkuwar. Innovative Vaccine Technologies: Current Landscape and Future Prospects in Preventive Medicine. International Journal of Vaccines. 2024; 01(02):07-15.
How to cite this URL: Satish Kumar Sarankar, Santosh Ojha, Brajesh Rajak, Sushma Somkuwar. Innovative Vaccine Technologies: Current Landscape and Future Prospects in Preventive Medicine. International Journal of Vaccines. 2024; 01(02):07-15. Available from:


  1. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., Zhao, X., Huang, B., Shi, W., Lu, R., Niu, P., Zhan, F., Ma, X., Wang, D., Xu, W., Wu, G., Gao, G. F., & Tan, W. (2020). A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 382(8), 727–733.
  2. Gully, P. R. (2020). Pandemics, regional outbreaks, and sudden-onset disasters. Healthcare Management Forum, 33(4), 164–169.
  3. Ball, P. (2021). The lightning-fast quest for COVID vaccines-and what it means for other diseases. Nature, 589(7841), 16–18.
  4. WHO Ad Hoc Expert Group on the Next Steps for Covid-19 Vaccine Evaluation. (2021). Placebo-controlled trials of Covid-19 vaccines-why we still need them. New England Journal of Medicine, 384(2), e2.
  5. Fu, W., Sivajohan, B., McClymont, E., et al. (2022). Systematic review of the safety, immunogenicity, and effectiveness of COVID-19 vaccines in pregnant and lactating individuals and their infants. International Journal of Gynaecology and Obstetrics, 156, 406-417.
  6. Donders, G. G. G., Grinceviciene, S., Haldre, K., et al. (2021). ISIDOG Consensus Guidelines on COVID-19 Vaccination for Women before, during and after Pregnancy. Journal of Clinical Medicine, 10, 2902.
  7. Global Preparedness Monitoring Board. (2019). A World at Risk: Annual Report on Global Preparedness for Health Emergencies. Geneva, Switzerland: World Health Organization. Licence: CC BY-NC-SA 3.0 IGO.
  8. Alvim, R. G., Itabaiana, I. Jr., & Castilho, L. R. (2019). Zika virus-like particles (VLPs): stable cell lines and continuous perfusion processes as a new potential vaccine manufacturing platform. Vaccine, 37, 6970–6977.
  9. He, L., De Val, N., Morris, C. D., Vora, N., Thinnes, T. C., Kong, L., et al. (2016). Presenting native-like trimeric HIV-1 antigens with self-assembling nanoparticles. Nature Communications, 7, 1–15.
  10. Lu, L., Duong, V. T., Shalash, A. O., Skwarczynski, M., & Toth, I. (2021). Chemical conjugation strategies for the development of protein-based subunit nanovaccines. Vaccines, 9, 563.
  11. Stphen, S. L., Beales, L., Peyret, H., Roe, A., Stonehouse, N. J., & Rowlands, D. J. (2018). Recombinant expression of tandem–HBc virus-like particles (VLPs). In C. Wege & G. Lomonossoff (Eds.), Virus-Derived Nanoparticles for Advanced Technologies (pp. 97–123). Humana Press.
  12. Uddin, M. N., Henry, B., Carter, K. D., Roni, M. A., &Kouzi, S. S. (2019). A novel formulation strategy to deliver combined DNA and VLP based HPV vaccine. Journal of Pharmacy & Pharmaceutical Sciences, 22, 536–547.
  13. Rosenblum, H. G., Hadler, S. C., Moulia, D., et al. (2021). Use of COVID-19 vaccines after reports of adverse events among adult recipients of Janssen (Johnson & Johnson) and mRNA COVID-19 vaccines (Pfizer-BioNTech and Moderna): update from the Advisory Committee on Immunization Practices—United States, July 2021. MMWR. Morbidity and Mortality Weekly Report, 70, 1094–1099.
  14. Wang, W., Huang, B., Zhu, Y., Tan, W., & Zhu, M. (2021). Ferritin nanoparticle-based SARS-CoV-2 RBD vaccine induces a persistent antibody response and long-term memory in mice. Cellular & Molecular Immunology, 18, 749–751.
  15. Zak, M. M., & Zangi, L. (2021). Lipid nanoparticles for organ-specific mRNA therapeutic delivery. Pharmaceutics, 13, 1675.
  16. Claude, K. M., Underschultz, J., & Hawkes, M. T. (2018). Ebola virus epidemic in war-torn eastern DR Congo. The Lancet, 392, 1399–1401.
  17. Burley, M., Roberts, S., & Parish, J. L. (2020). Epigenetic regulation of human papillomavirus transcription in the productive virus life cycle. Seminars in Immunopathology, 42, 159–171.
  18. Diamos, A. G., Larios, D., Brown, L., Kilbourne, J., Kim, H. S., Saxena, D., et al. (2019). Vaccine synergy with virus-like particle and immune complex platforms for delivery of human papillomavirus L2 antigen. Vaccine, 37, 137–144.
  19. Garg, H., Mehmetoglu-Gurbuz, T., & Ruddy, G. M., Joshi, A. (2019). Capsid containing virus like particle vaccine against Zika virus made from a stable cell line. Vaccine, 37, 7123–7131.
  20. Vouga, M., Musso, D., Goorhuis, A., Freedman, D. O., & Baud, D. (2018). Updated Zika virus recommendations are needed. The Lancet, 392(10150), 818-819.
  21. Paixao, E. S., Teixeira, M. G., & Rodrigues, L. C. (2018). Zika, chikungunya and dengue: The causes and threats of new and re-emerging arboviral diseases. BMJ Global Health, 3, e000530.
  22. Prompetchara, E., Ketloy, C., Thomas, S. J., &Ruxrungtham, K. (2020). Dengue vaccine: Global development update. Asian Pacific Journal of Allergy and Immunology, 38, 178–185.
  23. Lee, D. H., Chu, K. B., Kang, H. J., Lee, S. H., Chopra, M., Choi, H. J., et al. (2019). Protection induced by malaria virus-like particles containing codon-optimized AMA-1 of Plasmodium berghei. Malaria Journal, 18, 1–12.
  24. Janitzek, C. M., Peabody, J., Thrane, S., Carlsen, P. H., Theander, T. G., Salanti, A., et al. (2019). A proof-of-concept study for the design of a VLP-based combinatorial HPV and placental malaria vaccine. Scientific Reports, 9, 5260.
  25. Yousafzai, M. T., et al. (2019). Ceftriaxone-resistant Salmonella Typhi outbreak in Hyderabad City of Sindh, Pakistan: High time for the introduction of typhoid conjugate vaccine. Clinical Infectious Diseases, 68, S16–S21.
  26. Andrews, J. R., et al. (2019). Typhoid conjugate vaccines: A new tool in the fight against antimicrobial resistance. The Lancet Infectious Diseases, 19, e26–e30.
  27. Baden, L. R., et al. (2021). Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. New England Journal of Medicine, 384, 403–416.
  28. Zellweger, R. M., Wartel, T. A., Marks, F., Song, M., & Kim, J. H. (2020). Vaccination against SARS-CoV-2 and disease enhancement – knowns and unknowns. Expert Review of Vaccines, 19, 691–698.
  29. Liu, C.-H., Hu, Y.-T., Wong, S. H., & Lin, L.-T. (2022). Therapeutic strategies against Ebola virus infection. Viruses, 14(3), 579.
  30. Shehu, N. Y., Shwe, D., Onyedibe, K. I., Pam, V. C., Abok, I., Isa, S. E., & Egah, D. Z. (2018). Pathogenesis, diagnostic challenges and treatment of Zika virus disease in resource-limited settings. Nigerian Postgraduate Medical Journal, 25(2), 67-72.
  31. Low, J. M., Gu, Y., Ng, M. S. F., et al. (2021). Codominant IgG and IgA expression with minimal vaccine mRNA in milk of BNT162b2 vaccinees. NPJ Vaccines, 6, 105.
  32. Klemm, E. J., et al. (2018). Emergence of an extensively drug-resistant Salmonella enterica serovar Typhi clone harboring a promiscuous plasmid encoding resistance to fluoroquinolones and third-generation cephalosporins. mBio, 9, e00105–18.
  33. D’Souza, M. P., & Frahm, N. (2010). Adenovirus 5 serotype vector-specific immunity and HIV-1 infection: A tale of T cells and antibodies. AIDS, 24, 803–809.
  34. van Riel, D., & de Wit, E. (2020). Next-generation vaccine platforms for COVID-19. Nature Materials, 19, 810–812.
  35. Dhanasooraj, D., Kumar, R. A., &Mundayoor, S. (2016). Subunit protein vaccine delivery system for tuberculosis based on hepatitis B virus core VLP (HBc-VLP) particles. In M. S. Islam (Ed.), Methods in Molecular Biology (pp. 377–92). Humana Press Inc.
  36. Hall, A. J., et al. (2013). Norovirus disease in the United States. Emerging Infectious Diseases, 19, 1198–1205.
  37. Gatti-Mays, M. E., Redman, J. M., Collins, J. M., &Bilusic, M. (2017). Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Human Vaccines &Immunotherapeutics, 13, 2561–2574.
  38. Heath, P. T., et al. (2021). Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. New England Journal of Medicine, 385, 1172–1183.
  39. Van Oosten, L., et al. (2021). Two-component nanoparticle vaccine displaying glycosylated spike S1 domain induces neutralizing antibody response against SARS-CoV-2 variants. mBio, 12(4), e01813-21.
  40. Aurisicchio, L., Pallocca, M., Ciliberto, G., & Palombo, F. (2018). The perfect personalized cancer therapy: Cancer vaccines against neoantigens. Journal of Experimental & Clinical Cancer Research, 37, 86.
  41. Berlanda Scorza, F., Tsvetnitsky, V., & Donnelly, J. J. (2016). Universal influenza vaccines: Shifting to better vaccines. Vaccine, 34, 2926–2933.
  42. Bremer, P. T., et al. (2016). Combatting Synthetic Designer Opioids: A Conjugate Vaccine Ablates Lethal Doses of Fentanyl Class Drugs. AngewandteChemie International Edition, 55, 3772–3775.
  43. Guo, J., et al. (2019). Immunogenicity of a virus-like-particle vaccine containing multiple antigenic epitopes of Toxoplasma gondii against acute and chronic toxoplasmosis in mice. Frontiers in Immunology, 10, 592.
  44. Lorenzer, C., Dirin, M., Winkler, A. M., Baumann, V., & Winkler, J. (2015). Going beyond the liver: Progress and challenges of targeted delivery of siRNA therapeutics. Journal of Controlled Release, 203, 1–15.
  45. Gatti-Mays, M. E., Redman, J. M., Collins, J. M., &Bilusic, M. (2017). Cancer vaccines: Enhanced immunogenic modulation through therapeutic combinations. Human Vaccines &Immunotherapeutics, 13, 2561–2574.

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received March 20, 2024
Accepted March 21, 2024
Published March 30, 2024