Kaushki Kanna,
Darshpreet Singh,
Usha Shukla,
- Student, Department of Physics , Amity University Lucknow Campus, Uttar Pradesh, India
- Student, Department of Physics , Amity University Lucknow Campus, Uttar Pradesh, India
- Assistant Professor, Department of Physics , Amity University Lucknow Campus, Uttar Pradesh, India
Abstract
The extraordinary class of materials known as nanomaterials has come into being. A large variety of elements with minimum one dimension between 1 and 100 nm are included. Reasonably designed nanomaterials can have exceptionally large surface areas. Nanomaterials can be made to have exceptional mechanical, optical, electrical, magnetic, and catalytic properties that are very different from those of their bulk counterparts. To achieve the necessary features tuning, nanomaterials’ size, shape, synthesis conditions, and proper functionalisation can all be precisely controlled. One technique for creating several types of nanoparticles is laser ablation. These include core shell nanoparticles, semiconductor quantum dots, carbon nanotubes, and nanowires. Using this technique, species that have been laser-vaporized in a background gas nucleate and proliferate to form nanoparticles. By rapidly quenching vapour, high purity nanoparticles across the quantum size range (< 10 nm) can be produced. This paper reports the laser ablation method's benefits, including precise material removal, minimal heat damage, and applicability across various fields, highlight its potential as a key tool in nanoparticle synthesis and material processing.
Keywords: Laser ablation method, benefits, nanoparticle synthesis, material processing.
[This article belongs to International Journal of Radio Frequency Innovations (ijrfi)]
Kaushki Kanna, Darshpreet Singh, Usha Shukla. Exploring the Potential of Laser Ablation for Multi-functional Nanoparticle Production. International Journal of Radio Frequency Innovations. 2024; 02(02):40-45.
Kaushki Kanna, Darshpreet Singh, Usha Shukla. Exploring the Potential of Laser Ablation for Multi-functional Nanoparticle Production. International Journal of Radio Frequency Innovations. 2024; 02(02):40-45. Available from: https://journals.stmjournals.com/ijrfi/article=2024/view=185409
References
- Kim M, Saho Osone Kim T, Higashi H, Seto Synthesis of Nanoparticles by Laser Ablation: A Review. Kona Powder and Particle Journal (Kona). 2017; 34(0): 80–90. https://doi.org/10.14356/
kona.2017009 - Sharma R, Bisen DP, Shukla U, Sharma B X-ray diffraction: a powerful method of characterizing nanomaterials. Recent Res Sci Technol. 2012; 4(8): 77–79.
- Alagarasi Chapter-introduction to nanomaterials. India: Indian Institute of Technology Madras; 2013; 1–24.
- Siegel RW, Hu E, Cox DM, Goronkin H, Jelinski L, Koch CC, et al., editors. Nanostructure Science and Technology: R & D Status and Trends in Nanoparticles, Nanostructured Materials and Nanodevices. Dordrecht: Springer; 1999. DOI: 10.1007/978-94-015-9185-0.
- McDowell MT, Xiong H, Nazemi M, Peng J, Lutkenhaus JL, Wang R, Gogotsi Y, et al. Nanomaterials in the future of energy research. Cell Rep Phys Sci. 2023; 4(11): 101605.
- Yadav D Synthesis of nanomaterials by physical and chemical methods. Int Educ Res J. 2017; 3(6): 350–352.
- Khan F Synthesis of nanomaterials: methods & technology. Applications of nanomaterials in human health. Singapore: Springer; 2020; 15–21.
- Baig N, Irshad Kammakakam, Wail Falath. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv. 2021; 2(6): 1821–1871. https://doi.org/10.
1039/d0ma00807a - Shukla Carbon nanotubes: potentially revolutionary impact of nanomaterials. J Nanosci Res Rep. 2023; 149(5): 2–7.
- Laser Scientist. (2023 Dec 5). Laser Ablation: Process, Applications, and Benefits. [Online]. Retrieved from: https://laserscientist.com/laser-ablation/#:~:text=Laser%20ablation%20offers%20
benefits%20like%20precis%20material%20removal%2C,a%20cost-effective%20and%20efficient
%20technique%20for%20material%20processing - Shukla Sr U, Srivastava Sr Influence of the Temperature on the Photoluminescence Intensity of the CdS: Cu Nanophosphors. Int J Multidiscip Consort. 2014; 1(1): 1–4.
- Rai A, Shukla Nanowire Photodetectors and Applications: A Review Study. J Semicond Devices Circuits. 2023; 10(2): 15–19.
- Shukla Optical Properties of Bulk ZnS: Mn and ZnS: Mn Nanoparticles. J Pure Appl Ind Phys. 2012; 2(3A): 286–402.
Volume | 02 |
Issue | 02 |
Received | 28/08/2024 |
Accepted | 21/10/2024 |
Published | 23/11/2024 |
Views: 0