Review of Control Strategies in Lower Extremity Exoskeleton

Year : 2024 | Volume :01 | Issue : 02 | Page : 9-21
By

    Devendra Vashist

  1. Rajnish Kumar Sharma

  1. Professor, Department of Automobile and Aeronautical Engineering, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
  2. Assistant Professor, Department of Automobile and Aeronautical Engineering, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India

Abstract

Personal mobility is one of the biggest challenges for ensuring the quality of rehabilitation in the lives of Persons with Locomotor Disabilities (PwLDs) and old aged persons. In order to ensure effective orthotic rehabilitation, there is need to design and develop more and more automated aids and appliances. In order to know the status of research a study has been made on the controllers of lower limb exoskeleton (LLE). In the present work various application of robotics in lower extremity orthotics were studied and trends reviewed in the advancements in controller technology. The review also analyze assistive orthotic exoskeleton systems catering to the areas of application of the hip, knee and ankle. Another finding of the study on usage application is that fuzzy and PID controllers were mostly-applied to knee areas because of their fine-tuning with area of application. Based on the review, five different categories of control methods were devised. It was found that sliding mode control (SMC) dominated as the most used controller in LLE research. The study provides an overview of the evolving trends in control methods like reinforcement learning, deep neural networks and hybrid control systems. Further the work concludes that there are very few control methods catering specifically to assisting movement of ankle joint.

Keywords: Orthotics, Lower Limb Exoskeleton, Controllers, Rehabilitation devices

[This article belongs to International Journal of Robotics and Automation in Mechanics(ijram)]

How to cite this article: Devendra Vashist, Rajnish Kumar Sharma , Review of Control Strategies in Lower Extremity Exoskeleton ijram 2024; 01:9-21
How to cite this URL: Devendra Vashist, Rajnish Kumar Sharma , Review of Control Strategies in Lower Extremity Exoskeleton ijram 2024 {cited 2024 Mar 29};01:9-21. Available from: https://journals.stmjournals.com/ijram/article=2024/view=136430


Browse Figures

References

  1. Mefoued, S. Mohammed, and Y. Amirat, ‘Toward movement restoration of knee joint using robust control of powered orthosis’, IEEE Transactions on Control Systems Technology, vol. 21, no. 6, (2013), pp. 2156–2168, doi: 10.1109/TCST.2012.2228194.
  2. Sanz-Merodio, M. Cestari, J. C. Arevalo, X. Carrillo, and E. Garcia, ‘Development of a lower-limb active orthosis and a walker for gait assistance’, in Advances in Intelligent Systems and Computing, Springer Verlag, (2014) pp. 219–233. doi: 10.1007/978-3-319-03413-3_16.
  3. Sanz-Merodio, M. Cestari, J. C. Arevalo, X. A. Carrillo, and E. Garcia, ‘Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance’, Advanced Robotics, vol. 28, no. 5, (2014) pp. 329–338, doi: 10.1080/01691864.2013.867284.
  4. Song, X. Zhang, and Z. Tan, ‘RBF neural network based sliding mode control of a lower limb exoskeleton suit’, Strojniski Vestnik/Journal of Mechanical Engineering, vol. 60, no. 6, (2014) pp. 437–446, doi: 10.5545/sv-jme.2013.1366.
  5. Mefoued, ‘A second order sliding mode control and a neural network to drive a knee joint actuated orthosis’, Neurocomputing, vol. 155, (2015) pp. 71–79, doi: 10.1016/j.neucom.2014.12.047.
  6. Madani, B. Daachi, and K. Djouani, ‘Non-singular terminal sliding mode controller: Application to an actuated exoskeleton’, Mechatronics, vol. 33, (2016) pp. 136–145, doi: 10.1016/j.mechatronics.2015.10.012.
  7. Mohammed, W. Huo, J. Huang, H. Rifaï, and Y. Amirat, ‘Nonlinear disturbance observer based sliding mode control of a human-driven knee joint orthosis’, Rob Auton Syst, vol. 75, (2016) pp. 41–49, doi: 10.1016/j.robot.2014.10.013.
  8. M. Linares, ‘Modelling and Control of Lower Limb Exoskeletons and Walking Aid for Fundamental Mobility Tasks’, (2016).
  9. K Alshatti and T. M. O, ‘PD-Fuzzy Control of Single Lower Limb Exoskeleton for Hemiplegia Mobility’, Academy and Industry Research Collaboration Center (AIRCC), (2017), pp. 53–62. doi: 10.5121/csit.2017.71005.
  10. Wu, T. Jia, N. Li, J. Wu, and L. Yan, ‘Study on the control algorithm for lower limb exoskeleton based on ADAMS/Simulink co-simulation’, Journal of Vibroengineering, vol. 19, no. 4, (2017) pp. 2976–2986, doi: 10.21595/jve.2017.17303.
  11. I. Minchala, F. Astudillo‐Salinas, K. Palacio‐Baus, and A. Vazquez‐Rodas, ‘Mechatronic Design of a Lower Limb Exoskeleton’, in Design, Control and Applications of Mechatronic Systems in Engineering, InTech, (2017). doi: 10.5772/67460.
  12. Ü. Önen, F. M. Botsalı, M. Kalyoncu, Y. Şahin, and M. Tınkır, ‘Design and Motion Control of a Lower Limb Robotic Exoskeleton’, in Design, Control and Applications of Mechatronic Systems in Engineering, InTech, (2017). doi: 10.5772/67458.
  13. S. M. Nacy, Nebras H. Ghaeb, and M. M. M. Abdullah, ‘A review of Lower Limb Exoskeletons.pdf’, Innovative Systems Design and Engineering, vol. 7, no. 1, (2016) pp. 1–12, [Online]. Available: www.iiste.org
  14. Jiménez-Fabián and O. Verlinden, ‘Review of control algorithms for robotic ankle systems in lower-limb orthoses, prostheses, and exoskeletons’, Medical Engineering and Physics, vol. 34, no. 4. (2012) pp. 397–408, doi: 10.1016/j.medengphy.2011.11.018.
  15. S. H. Bhuiyan, I. A. Choudhury, and M. Dahari, ‘Development of a control system for artificially rehabilitated limbs: a review’, Biological Cybernetics, vol. 109, no. 2. Springer Verlag, (2015) pp. 141–162, doi: 10.1007/s00422-014-0635-1.
  16. R. Tucker et al., ‘Control strategies for active lower extremity prosthetics and orthotics: a review’, (2015) [Online]. Available: http://www.jneuroengrehab.com/content/12/1/1
  17. Baud, A. R. Manzoori, A. Ijspeert, and M. Bouri, ‘Review of control strategies for lower-limb exoskeletons to assist gait’, Journal of NeuroEngineering and Rehabilitation, vol. 18, no. 1. BioMed Central Ltd, (2021) doi: 10.1186/s12984-021-00906-3.
  18. Huang, H. Zhou, and G. Masengo, ‘Lower limb exoskeleton robot and its cooperative control: A review, trends, and challenges for future research’.
  19. Shi, W. W. Zhang, W. W. Zhang, and X. Ding, ‘A Review on Lower Limb Rehabilitation Exoskeleton Robots’, Chinese Journal of Mechanical Engineering (English Edition), vol. 32, no. 1. (2019) Chinese Mechanical Engineering Society, doi: 10.1186/s10033-019-0389-8.
  20. Pinto-Fernandez et al., ‘Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review’, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no. 7, (2020) pp. 1573–1583, doi: 10.1109/TNSRE.2020.2989481.
  21. Ezhilarasi and A. S. Nair, ‘Modeling and Evaluation of Adaptive Super Twisting Sliding Mode Control in Lower Extremity Exoskeleton’, International Journal of Precision Engineering and Manufacturing – Green Technology, vol. 8, no. 3, (2021) pp. 901–915, doi: 10.1007/s40684-021-00335-6.
  22. Delavari and R. Jokar, ‘Fractional Order Adaptive Fuzzy Terminal Sliding Mode Controller Design for a Knee Joint Orthosis’, (2019).
  23. Do and D. T. Vu, ‘An Intelligent Control for Lower Limb Exoskeleton for Rehabilitation’, International Journal of Electrical and Electronics Engineering, vol. 4, no. 8, (2017) pp. 13–19, doi: 10.14445/23488379/IJEEE-V4I8P103.
  24. K. Tanyildizi, O. Yakut, and B. Tasar, ‘Mathematical modeling and control of lower extremity exoskeleton’, Biomedical Research (India), vol. 29, no. 9, (2018) pp. 1947–1952, doi: 10.4066/biomedicalresearch.29-18-509.
  25. S. Amiri, R. Ramli, and A. Barari, ‘Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton’, Mathematics, vol. 11, no. 7, (2023) pp. 1–14, 2023, doi: 10.3390/math11071564.
  26. Yeem, J. Heo, H. Kim, and Y. Kwon, ‘Technical Analysis of Exoskeleton Robot’, World Journal of Engineering and Technology, vol. 07, no. 01, (2019) pp. 68–79, doi: 10.4236/wjet.2019.71004.
  27. Di Natali et al., ‘Design and Evaluation of a Soft Assistive Lower Limb Exoskeleton’, Robotica, vol. 37, no. 12, pp. 2014–2034, 2019, doi: 10.1017/S0263574719000067.
  28. Ai et al., ‘Disturbance-estimated adaptive backstepping sliding mode control of a pneumatic muscles-driven ankle rehabilitation robot’, Sensors (Switzerland), vol. 18, no. 1, (2018), doi: 10.3390/s18010066.
  29. Zhang, J. Zhang, and Z. Zhang, ‘Design of RBFNN-Based Adaptive Sliding Mode Control Strategy for Active Rehabilitation Robot’, IEEE Access, vol. 8, (2020) pp. 155538–155547, doi: 10.1109/ACCESS.2020.3018737.
  30. He, R. Xi, and Y. Gong, ‘Performance Analysis of a Robust Controller with Neural Network Algorithm for Compliance Tendon–Sheath Actuation Lower Limb Exoskeleton’, Machines, vol. 10, no. 11, (2022), doi: 10.3390/machines10111064.
  31. Gao et al., ‘Autonomous motion and control of lower limb exoskeleton rehabilitation robot’, Front Bioeng Biotechnol, vol. 11, (2023), doi: 10.3389/fbioe.2023.1223831.
  32. Ahmed, H. Wang, and Y. Tian, ‘Model-free control using time delay estimation and fractional-order nonsingular fast terminal sliding mode for uncertain lower-limb exoskeleton’, JVC/Journal of Vibration and Control, vol. 24, no. 22, pp. 5273–5290, (2018), doi: 10.1177/1077546317750978.
  33. Ahmed, H. Wang, and Y. Tian, ‘Robust Adaptive Fractional-Order Terminal Sliding Mode Control for Lower-Limb Exoskeleton’, in Asian Journal of Control, Wiley-Blackwell, (2019), pp. 473–482. doi: 10.1002/asjc.1964.
  34. Zhou, Z. Sun, B. Chen, G. Huang, X. Wu, and T. Wang, ‘Human gait tracking for rehabilitation exoskeleton : adap- tive fractional order sliding mode control approach’, vol. 3, no. 1, (2023) pp. 95–112, 2023, doi: 10.20517/ir.2023.05.
  35. Huang, X. Huang, X. Tu, Z. Li, and Y. Wen, ‘An online gain tuning proxy-based sliding mode control using neural network for a gait training robotic orthosis’, Cluster Comput, vol. 19, no. 4, (2016) pp. 1987–2000, doi: 10.1007/s10586-016-0629-y.
  36. Bkekri, A. Benamor, M. A. Alouane, G. Fried, and H. Messaoud, ‘Robust adaptive sliding mode control for a human-driven knee joint orthosis’, Industrial Robot, vol. 45, no. 3, (2018) pp. 379–389, doi: 10.1108/IR-11-2017-0205.
  37. Chen, Q. Guo, Y. Yan, and D. Jiang, ‘Robust Sliding Mode Control for a 2-DOF Lower Limb Exoskeleton Base on Linear Extended State Observer’, Mechanical Engineering Science, vol. 2, no. 2, (2020), doi: 10.33142/mes.v2i2.3160.
  38. Minh Duc, T. Xuan Tuy, and P. Dang Phuoc, ‘A Study on the Response of the Rehabilitation Lower Device using Sliding Mode Controller’, (2021). [Online]. Available: www.etasr.com
  39. S. Nair and D. Ezhilarasi, ‘Performance Analysis of Super Twisting Sliding Mode Controller by ADAMS–MATLAB Co-simulation in Lower Extremity Exoskeleton’, International Journal of Precision Engineering and Manufacturing – Green Technology, vol. 7, no. 3, (2020) pp. 743–754, doi: 10.1007/s40684-020-00202-w.
  40. Mokhtari, M. Taghizadeh, and M. Mazare, ‘Optimal Adaptive Super-Twisting Sliding Mode Control of an Lower Limb Exoskeleton’, Amirkabir Journal of Mechanical Engineering Amirkabir J. Mech. Eng, vol. 52, no. 12, (2021) pp. 873–876, doi: 10.22060/mej.2019.16292.6321.
  41. M. Rakhtala, ‘Adaptive gain super twisting algorithm to control a knee exoskeleton disturbed by unknown bounds’, Int J Dyn Control, vol. 9, no. 2, (2021) pp. 711–726, doi: 10.1007/s40435-020-00686-z.
  42. A. Faraj, B. Maalej, N. Derbel, and O. Naifar, ‘Adaptive Fractional-Order Super-Twisting Sliding Mode Controller for Lower Limb Rehabilitation Exoskeleton in Constraint Circumstances Based on the Grey Wolf Optimization Algorithm’, (2023),
  43. K. Hasan and A. K. Dhingra, ‘Biomechanical design and control of an eight DOF human lower extremity rehabilitation exoskeleton robot’, Results in Control and Optimization, vol. 7, (2022), doi: 10.1016/j.rico.2022.100107.
  44. Pérez-San Lázaro, I. Salgado, and I. Chairez, ‘Adaptive sliding-mode controller of a lower limb mobile exoskeleton for active rehabilitation’, ISA Trans, vol. 109, pp. 218–228, (2021), doi: 10.1016/j.isatra.2020.10.008.
  45. A. Faraj, B. Maalej, and N. Derbel, ‘Optimal sliding mode controller for lower limb rehabilitation exoskeleton in constrained environments’, Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 3, (2023) pp. 1458–1469, doi: 10.11591/ijeecs.v30.i3.pp1458-1469.
  46. Chen, C. Wang, X. Song, J. Wang, T. Zhang, and X. Li, ‘Dynamic trajectory adjustment of lower limb exoskeleton in swing phase based on impedance control strategy’, Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 234, no. 10, (2020) pp. 1120–1132, Nov. 2020, doi: 10.1177/0959651820932026.
  47. Mefoued and D. E. C. Belkhiat, ‘A Robust Control Scheme Based on Sliding Mode Observer to Drive a Knee-Exoskeleton’, in Asian Journal of Control, Wiley-Blackwell, (2019), pp. 439–455. doi: 10.1002/asjc.1950.
  48. Zhang, G. Cao, W. Li, J. Chen, L. Li, and D. Diao, ‘A self-adaptive-coefficient-double-power sliding mode control method for lower limb rehabilitation exoskeleton robot’, Applied Sciences (Switzerland), vol. 11, no. 21, (2021), doi: 10.3390/app112110329.
  49. Torabi, M. Sharifi, and G. Vossoughi, ‘Robust adaptive sliding mode admittance control of exoskeleton rehabilitation robots’, Scientia Iranica, vol. 25, no. 5B, (2018) pp. 2628–2642, doi: 10.24200/sci.2017.4512.
  50. S. Amiri, R. Ramli, M. A. Ahmad Tarmizi, M. F. Ibrahim, and K. D. Narooei, ‘Simulation and Control of a Six Degree of Freedom Lower Limb Exoskeleton’, Jurnal Kejuruteraan, vol. 32, no. 2, (2020) pp. 197–204, May 2020, doi: 10.17576/jkukm-2020-32(2)-03.
  51. K. Alshatti, ‘Design and Control of Lower Limb Assistive Exoskeleton for Hemiplegia Mobility’, (2019).
  52. Engineering, ‘Feedback Linearization Control of Lower Limb Exoskeleton Robot for Rehabilitation’, vol. 01016, (2023) pp. 1–9.
  53. Jenhani and H. Gritli, ‘LMI-Based Design of an Affine PD Controller for the Robust Stabilization of the Knee Joint of a Lower-Limb Rehabilitation Exoskeleton’, Institute of Electrical and Electronics Engineers (IEEE), (2023), pp. 1–7. doi: 10.1109/ic_aset58101.2023.10151346.
  54. Kumar, Y. Bothara, D. Ezhilarasi, and K. Mohanavelu, ‘Atomic Orbital Search Optimization Based Fractional Order PID Controller for 4 DoF Lower Limb Exoskeleton’, Institute of Electrical and Electronics Engineers (IEEE), (2023), pp. 1–6. doi: 10.1109/picc57976.2023.10142336.
  55. Garcia and P. Gonzalez de Santos, ‘On the improvement of walking performance in natural environments by a compliant adaptive gait’, IEEE Transactions on Robotics, vol. 22, no. 6, (2006) pp. 1240–1253, doi: 10.1109/TRO.2006.884343.
  56. Maalej, A. Chemori, H. Medhaffar, and N. Derbel, ‘A Fuzzy Sliding Mode Controller for Reducing Torques Applied to a Rehabilitation Robot’, (2020). Available: https://hal-lirmm.ccsd.cnrs.fr/lirmm-03135772
  57. Tu et al., ‘An adaptive sliding mode variable admittance control method for lower limb rehabilitation exoskeleton robot’, Applied Sciences (Switzerland), vol. 10, no. 7, (2020), doi: 10.3390/app10072536.
  58. Llorente-Vidrio, R. Pérez-San Lázaro, M. Ballesteros, I. Salgado, D. Cruz-Ortiz, and I. Chairez, ‘Event driven sliding mode control of a lower limb exoskeleton based on a continuous neural network electromyographic signal classifier’, Mechatronics, vol. 72, (2020) doi: 10.1016/j.mechatronics.2020.102451.
  59. Liu, J. Wang, and G. Zhang, ‘Event-triggered sliding mode controller design for lower limb exoskeleton’, (2020).
  60. Liu, S. Peng, J. Zhang, K. Xie, Z. Lin, and W. H. Liao, ‘Event-Triggered Sliding Mode Impulsive Control for Lower Limb Rehabilitation Exoskeleton Robot Gait Tracking’, Symmetry (Basel), vol. 15, no. 1, (2023) pp. 1–19, doi: 10.3390/sym15010224.
  61. A. Alawad, A. J. Humaidi, and A. S. Alaraji, ‘Sliding Mode-Based Active Disturbance Rejection Control of Assistive Exoskeleton Device for Rehabilitation of Disabled Lower Limbs’, An Acad Bras Cienc, vol. 95, no. 2, (2023) pp. 1–17, doi: 10.1590/0001-3765202320220680.
  62. Aliman, R. Ramli, S. Mohamed Haris, M. Soleimani Amiri, and M. Van, ‘A robust adaptive-fuzzy-proportional-derivative controller for a rehabilitation lower limb exoskeleton’, Engineering Science and Technology, an International Journal, vol. 35, (2022), doi: 10.1016/j.jestch.2022.101097.
  63. Sarajchi and K. Sirlantzis, ‘Design and Control of a Single-Leg Exoskeleton with Gravity Compensation for Children with Unilateral Cerebral Palsy’, Sensors, vol. 23, no. 13, (2023) p. 6103, doi: 10.3390/s23136103.
  64. A. Alawad, A. J. Humaidi, and A. S. Alaraji, ‘A novel approach of multi-loop control based-ADRC for improving lower knee position exoskeleton system’, International Review of Applied Sciences and Engineering, (2023), doi: 10.1556/1848.2023.00546.
  65. Sun, J. Hu, and R. Huang, ‘Negative-Stiffness Structure Vibration-Isolation Design and Impedance Control for a Lower Limb Exoskeleton Robot’, Actuators, vol. 12, no. 4, (2023) pp. 1–18, doi: 10.3390/act12040147.
  66. Narayan, M. Abbas, and S. K. Dwivedy, ‘Robust adaptive backstepping control for a lower-limb exoskeleton system with model uncertainties and external disturbances’, Automatika, vol. 64, no. 1, (2023) pp. 145–161, 2023, doi: 10.1080/00051144.2022.2119498.
  67. Luo, G. Androwis, S. Adamovich, E. Nunez, H. Su, and X. Zhou, ‘Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning’, J Neuroeng Rehabil, vol. 20, no. 1, (2023) pp. 1–19, doi: 10.1186/s12984-023-01147-2.
  68. B. Küçüktabak et al., ‘Haptic Transparency and Interaction Force Control for a Lower-Limb Exoskeleton’, (2023), [Online]. Available: http://arxiv.org/abs/2301.06244
  69. Qin, H. Ji, M. Chen, and K. Wang, ‘A Self-Coordinating Controller with Balance-Guiding Ability for Lower-Limb Rehabilitation Exoskeleton Robot’, Sensors, vol. 23, no. 11, (2023), doi: 10.3390/s23115311.
  70. Yagn N: Apparatus for facilitating walking, running, and jumping. U.S. Patent 420179 1890.

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received December 7, 2023
Accepted January 28, 2024
Published March 29, 2024