Development of Novel Materials with Photocatalytic Effect

Year : 2024 | Volume :01 | Issue : 02 | Page : 25-39
By

Prof Dr Rakesh Kumar Khandal

  1. 1Scientist-C Shriram Institute for Industrial Research Delhi India

Abstract

For capturing solar energy and for converting it into electric power, it is utmost essential to design materials that can be used for this purpose. Generally, the materials deployed for converting solar energy into electric energy are sensitive to UV-radiation. If the material used for this purpose are sensitive to visible light, it will be the breakthrough research. It has been a challenge to design materials with novelty of being sensitive to visible light. The present paper deals with designing novel materials, sensitive to visible light. For this, UV-sensitive, Titanium dioxide (TiO2) was doped with Cadmium and Tungsten by two different methods. First method involved Ex-situ modification of nanoparticles of the anatase form of titanium dioxide, carried out by doping with cadmium sulphide and tungsten trioxide. Second method involved in-situ simultaneous synthesis of nanoparticles of titanium dioxide and the dopants, using the precursors tetra butyl titanate for titanium dioxide, cadmium chloride for cadmium and sodium tungstate for tungsten. The doped materials were evaluated for characteristics demonstrating their sensitivity to visible light. Results obtained for ex-situ method showed reduction in the band gap energy of TiO2 from 3.2 eV to 2.82 eV and 2.81eV by doping with 1% by wt. of cadmium sulfide and 4% by wt. of tungsten trioxide, respectively, at 400°C. For in-situ method, reduction in band gap energy of TiO2 was observed, from 3.2eV to 2.73eV and 2.81eV with cadmium precursor and tungsten precursor, respectively. In both the cases, doped material exhibited photocatalytic effect in visible light.

Keywords: Titanium dioxide, Photocatalytic activity, band gap, ex-situ, in-situ

[This article belongs to International Journal of Photochemistry and Photochemical Research(ijppr)]

How to cite this article: Prof Dr Rakesh Kumar Khandal. Development of Novel Materials with Photocatalytic Effect. International Journal of Photochemistry and Photochemical Research. 2024; 01(02):25-39.
How to cite this URL: Prof Dr Rakesh Kumar Khandal. Development of Novel Materials with Photocatalytic Effect. International Journal of Photochemistry and Photochemical Research. 2024; 01(02):25-39. Available from: https://journals.stmjournals.com/ijppr/article=2024/view=0

References

  1. Park H, Park Y, Kim W, et al. Surface modification of TiO2 photocatalyst for environmental applications. Photochem. and Photobio. C: Photochem. Rev. 2013; 15:1-20
  2. Al-Mamun M.R., Kader S., Islam M.S., et al. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. Environ. Chem. Engg. 2019; 7(5), 103248
  3. Sarkany, A., Revay, Z. Some features of acetylene and 1,3-butadiene hydrogenation on Ag/SiO2 and Ag/TiO2 App. Catal. A. 2003; 243(2):347-355
  4. Lee J.H., Leu I.C., Hsu M.C., et al. Fabrication of Aligned TiO2 One-Dimensional Nanostructured Arrays Using a One-Step Templating Solution Approach. Phys. Chem. B. 2005; 109(27):13056-13059.
  5. Lai Y.K., Chen Y.C., Zhuang H. F. et al. A facile method for synthesis of Ag/TiO2 Mater. Lett. 2008; 62(21-22): 3688-3690
  6. Lin C.F., Wu C.H., Onn Z.N. Degradation of 4-chlorophenol in TiO2, WO3, SnO2, TiO2/WO3 and TiO2/SnO2 J. Haz. Mater. 2008; 154(1-3): 1033
  7. Roy P, Albu S P., Schmuki P. TiO2 nanotubes in dye-sensitized solar cells: Higher efficiencies by well-defined tube tops. Comm. 2010; 12: 949–951
  8. Takat T, Shinahara K., Tanaka A.et al. A highly active photocatalyst for overall water splitting with a hydrated layered perovskite structure. Photochem. and Photobio. A. 1997; 106(1-3): 45-49
  9. Fu X.Z., Clark L.A., Yang Q., et al. Enhanced Photocatalytic Performance of Titania-Based Binary Metal Oxides:  TiO2/SiO2 and TiO2/ZrO2. Sci. and Techno., 1996; 30(2): 647-653
  10. Yan X.L, He J., Evans D.G, et al. Preparation, characterization and photocatalytic activity of Si-doped and rare earth-doped TiO2 from mesoporous precursors. Catal. B, 2005; 55(4): 243-252
  11. Jung K.Y. and Park S.B., Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Catal. B, 2000; 25(4): 249-256
  12. Sibu C. P., Kumar R. S., Mukundan P. et al. Structural Modifications and Associated Properties of Lanthanum Oxide Doped Sol−Gel Nanosized Titanium Oxide. Mater. 2002; 14(7): 2876-2881
  13. Aman N., Satapathy P. K., Mishra T., et al. Synthesis and photocatalytic activity of mesoporous cerium doped TiO2 as visible light sensitive photocatalyst. Res. Bull. 2012; 47(2): 179-183
  14. Sathasivam S, Bhachu D.S, Lu Y, et al. Tungsten Doped TiO2 with Enhanced Photocatalytic and Optoelectrical Properties via Aerosol Assisted Chemical Vapor Deposition. Nature:Scientific Reports, volume 5, Article number: 10952, 2015
  15. Couselo, N., García Einschlag, F. S., Candal, et al. Tungsten-Doped TiO2 vs Pure TiO2 Photocatalysts: Effects on Photobleaching Kinetics and Mechanism. Phys. Chem. C . 2008; 112: 1094–1100
  16. Lin Y.J., Chang Y.H., Yang W.D. et al. Synthesis and characterization of ilmenite NiTiO3 and CoTiO3 prepared by a modified Pechini method. Journal of Non-Crystalline Solids. 2006; 352(8): 789-794
  17. Begum N.S., Ahmed H.M.F., Gunashekar K.R. Effects of Ni doping on photocatalytic activity of TiO2 thin films prepared by liquid phase deposition technique. Mater. Sci. 2008; 31(5): 747-751
  18. Devi L.G., Kottam N., Kumar S. G. et al. Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light. Eur. J. Chem. 2010; 8(1): 142-148
  19. Sadjadi M.S., Mozaffari M., Enhessari M. et al. Effects of NiTiO3 nanoparticles supported by mesoporous MCM-41 on photoreduction of methylene blue under UV and visible light irradiation. Superlattics and Microstructures. 2010; 47(6): 685-694
  20. Witke K., Brezezinka K.W. and Reich P. Structural characterization of thin films formed or changed on materials by micro Raman spectroscopy. Fresenius’ J. Chem. 1998; 361 (6-7): 619-620
  21. Reddy B.M. and Ganesh I. Characterization of La2O3-TiO2 and V2O5/La2O3-TiO2 catalysts and their activity for synthesis of 2,6-dimethylphenol. Mol. Catal. A. 2001; 169(1-2): 207-223
  22. Reddy, B.M. and Ganesha, I. Surface Characterization of Ga2O3−TiO2 and V2O5/Ga2O3−TiO2 J. Phys. Chem. B. 2001; 105(26): 6227-6235
  23. El-Bially A. B., Seoudi R., Eisa W., et al. Preparation, Characterization and Physical Properties of CdS Nanoparticles with Different Sizes. App. Sci. Res. 2012; 8(2): 676-685
  24. Kumar, V.B. and Mohanta, D. Formation of nanoscale tungsten oxide structures and colouration characteristics. Mater. Sci. 2011; 34(3): 435-442

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received June 1, 2024
Accepted June 7, 2024
Published June 11, 2024

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}