Photochemical Insights into Light: Responsive Heterocyclic Compounds

[{“box”:0,”content”:”[if 992 equals=”Open Access”]n

n

n

n

Open Access

nn

n

n[/if 992]n

n

Year : June 3, 2024 at 5:30 pm | [if 1553 equals=””] Volume :01 [else] Volume :01[/if 1553] | [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] : 02 | Page : 01-07

n

n

n

n

n

n

By

n

[foreach 286]n

n

n

Neha Sahu, rizwan Arif

n

    n t

  • n

n

n[/foreach]

n

n[if 2099 not_equal=”Yes”]n

    [foreach 286] [if 1175 not_equal=””]n t

  1. Research Scholar, Assistant Professor Lingaya’s Vidyapeeth, Faridabad, ,, Department of Chemistry, School of Basic & Applied Sciences, Lingaya’s Vidyapeeth, Faridabad Haryana, Haryana India, India
  2. n[/if 1175][/foreach]

n[/if 2099][if 2099 equals=”Yes”][/if 2099]n

n

Abstract

neterocyclic compounds are significant in a wide range of chemical fields. They are crucial components of the structural makeup of bioactive substances. Such compounds can be conveniently transformed through photochemical processes. Chemical reagents are rarely utilized. It is possible for members of one compound family to change into members of another. There is discussion of three key categories of photochemical rearrangements involving heterocyclic compounds: Photochemical reactions involving hydrogen atom transfer (HAT), photochemical electrocyclization, and photochemical heteroatom isomerization involving heteroatoms and substituents. Heterocyclic system thermochemistry. Heterocyclic synthesis—both photoaddition and photocyclization—is quickly taking the lead as the preferred synthetic route. The processes of photochemical reactions are expounded upon in this chapter. When a molecule absorbs UV light, its energy increases to a point where bond breaking occurs. The molecule may so fragment and reorganize as a result. Based on ring size, the transformations are categorized and the impact on heterocycles is explored. There is also discussion of pyrazolines, heterocyclic dienes, and heteroaromatic compounds. In order to explore new molecular space, modern organic chemists are facing a major challenge: creating more complex and uncommon ring systems. Heterocyclic ring systems have been the subject of intense research into their biological functions. The research on organic photochemistry that has applications in organic synthesis was covered in this review. The synthesis of heterocyclic compounds was described in this review. Conventional methods are very cumbersome, expensive, or require specialist equipment that would not be useful to a synthetic organic chemist.

n

n

n

Keywords: Heterocycles, Photochemistry, Ultraviolet (UV) spectroscopy Photochemical, Sixmembered rings, Nitrogen

n[if 424 equals=”Regular Issue”][This article belongs to International Journal of Photochemistry and Photochemical Research(ijppr)]

n

[/if 424][if 424 equals=”Special Issue”][This article belongs to Special Issue under section in International Journal of Photochemistry and Photochemical Research(ijppr)][/if 424][if 424 equals=”Conference”]This article belongs to Conference [/if 424]

n

n

n

How to cite this article: Neha Sahu, rizwan Arif. Photochemical Insights into Light: Responsive Heterocyclic Compounds. International Journal of Photochemistry and Photochemical Research. June 3, 2024; 01(02):01-07.

n

How to cite this URL: Neha Sahu, rizwan Arif. Photochemical Insights into Light: Responsive Heterocyclic Compounds. International Journal of Photochemistry and Photochemical Research. June 3, 2024; 01(02):01-07. Available from: https://journals.stmjournals.com/ijppr/article=June 3, 2024/view=0

nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n[if 992 not_equal=”Open Access”]

[/if 992]n[if 992 not_equal=”Open Access”]


n


nn[/if 992]nn[if 379 not_equal=””]n

Browse Figures

n

n

[foreach 379]n

n[/foreach]n

n

n

n[/if 379]n

n

References

n[if 1104 equals=””]n

  1. Friedmann, D.A. General overview of heterogeneous photocatalysis as a remediation technology for wastewaters containing pharmaceutical compounds. Water 2022, 14, 3588.
  2. Dutschke, M.; Schnabel, T.; Schütz, F.; Springer, C. Degradation of chlorinated volatile organic compounds from contaminated ground water using a carrier-bound TiO2/UV/O3-system. Environ. Manag. 2022, 304, 114236.
  3. Fiorenza, R.; Spitaleria, L.; Perricelli, F.; Nicotra, G.; Fragalà, M.E.; Scirè, S.; Gulino, A. Efficient photocatalytic oxidation of VOCs using ZnO@Au nanoparticles. Photochem. Photobiol. A Chem. 2023, 434, 114232
  4. Zhang, Y.; Zhao, G.; Chen, Z.; Lian, H.; Gan, L.; Pan, M. Hierarchically nanostructured Ag/ZnO/nBC for VOC photocatalytic degradation: Dynamic adsorption and enhanced charge transfer. Environ. Chem. Eng. 2022, 10, 108690
  5. Ramalingam, G.; Perumal, N.; Priya, A.K.; Rajendran, S. A review of graphene-based semiconductors for photocatalytic degradation of pollutants in wastewater. Chemosphere 2022, 300, 134391.
  6. Kang, W.; Chen, S.; Yu, H.; Xu, T.; Wu, S.; Wang, X.; Lu, N.; Quan, X.; Liang, H. Photocatalytic ozonation of organic pollutants in wastewater using a flowing through reactor. Hazard. Mater. 2021, 405, 124277.
  7. Preda, S.; Umek, P.; Zaharescu, M.; Anastasescu, C.; Petrescu, S.V.; Gifu, C.; Eftemie, D.-I.; State, R.; Papa, F.; Balint, I. Iron-modified titanate nanorods for oxidation of aqueous ammonia using combined treatment with ozone and solar light irradiation. Catalysts 2022, 12, 666.
  8. Mirsadeghi, S.; Zandavar, H.; Rajabi, H.R.; Sajadiasl, F.; Ganjali, M.R.; Pourmortazavi, S.M. Superior degradation of organic pollutants and H2O2 generation ability on environmentally–sound constructed Fe3O4-Cu nanocomposite. Mater. Res. Technol. 2021, 14, 808–821.
  9. Qu, Y.; Chen, Z.; Duan, Y.; Liu, L. H2O2 assisted photocatalysis over Fe-MOF modified BiOBr for degradation of RhB. Chem. Technol. Biotechnol. 2022, 97, 2881–2888.
  10. Binas, V.; Venieri, D.; Kotzias, D.; Kiriakidis, G. Modified TiO2 based photocatalysts for improved air and health quality. Materiomics 2017, 3, 3–16.
  11. Denny, F.; Permana, E.; Scott, J.; Wang, J.; Pui, D.Y.H.; Amal, R. Integrated Photocatalytic Filtration Array for Indoor Air Quality Control. Sci. Technol. 2010, 44, 5558–5563.
  12. Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chem. Lett. Rev. 2018, 11, 86–102.
  13. Chen, W.; Wang, Y.; Liu, S.; Gao, L.; Mao, L.; Fan, Z.; Shangguan, W.; Jiang, Z. Non-noble metal Cu as a cocatalyst on TiO2 nanorod for highly efficient photocatalytic hydrogen production. Surf. Sci. 2018, 445, 527–534.
  14. Goncearenco, E.; Morjan, I.P.; Dutu, E.; Scarisoreanu, M.; Fleaca, C.; Gavrila-Florescu, L.; Dumitrache, F.; Banici, A.M.; Teodorescu, V.S.; Anastasescu, C.; et al. The effect of noble metal addition on the properties of oxide semiconductors nanoparticles. Solid State Chem. 2022, 307, 122817.
  15. Fukuhara, D.; Joseph, M.T.; Loumissi, T.; Zhang, C.; Itoi, T.; Zhang, H.; Izumi, Y. Local silver site temperature critically reflected partial and complete photooxidation of ethanol using Ag-TiO2 as revealed by extended X-ray absorption fine structure Debye−Waller factor. Phys. Chem. C. 2021, 125, 14689–14701.
  16. Haselmann, G.M.; Baumgartner, B.; Wang, J.; Wieland, K.; Gupta, T.; Herzig, C.; Limbeck, A.; Lendl, B.; Eder, D. In situ Pt photodeposition and methanol photooxidation on Pt/TiO2: Pt-loading-dependent photocatalytic reaction pathways studied by liquid-phase infrared spectroscopy. ACS Catal. 2020, 10, 2964–2977.
  17. Preda, S.; Anastasescu, C.; Balint, I.; Umek, P.; Sluban, M.; Negrila, C.; Angelescu, D.G.; Bratan, V.; Rusu, A.; Zaharescu, M. Charge separation and ROS generation on tubular sodium titanates exposed to simulated solar light. Surf. Sci. 2019, 470, 1053–1063.
  18. Anastasescu, C.; Zaharescu, M.; Angelescu, D.; Munteanu, C.; Bratan, V.; Spataru, T.; Negrila, C.; Spataru, N.; Balint, I. Defect-related light absorption, photoluminescence and photocatalytic activity of SiO2 with tubular morphology. Energ. Mater. Sol. Cells 2017, 159, 325–335.
  19. Raciulete, M.; Papa, F.; Negrila, C.; Bratan, V.; Munteanu, C.; Pandele-Cusu, J.; Culita, D.C.; Alkinson, I.; Balint, I. Strategy for modifying layered perovskites toward efficient solar light-driven photocatalysts for removal of chlorinated pollutants. Catalysts 2020, 10, 637.
  20. Raciulete, M.; Papa, F.; Kawamoto, D.; Munteanu, C.; Culita, D.C.; Negrila, C.; Atkinson, I.; Bratan, V.; Pandele-Cusu, J.; Balint, I. Particularities of trichloroethylene photoatalytic degradation over crystalline RbLaTa2O7 nanowire bundles grown by solid-state synthesis route. Environ. Chem. Eng. 2019, 7, 102789.

nn[/if 1104][if 1104 not_equal=””]n

    [foreach 1102]n t

  1. [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
  2. n[/foreach]

n[/if 1104]

nn


nn[if 1114 equals=”Yes”]n

n[/if 1114]

n

n

[if 424 not_equal=””]Regular Issue[else]Published[/if 424] Open Access Review Article

n

n

[if 2146 equals=”Yes”][/if 2146][if 2146 not_equal=”Yes”][/if 2146]n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n[if 1748 not_equal=””]

[else]

[/if 1748]n

n

n

Volume 01
[if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] 02
Received March 14, 2024
Accepted March 30, 2024
Published June 3, 2024

n

n

n

n

n

n function myFunction2() {n var x = document.getElementById(“browsefigure”);n if (x.style.display === “block”) {n x.style.display = “none”;n }n else { x.style.display = “Block”; }n }n document.querySelector(“.prevBtn”).addEventListener(“click”, () => {n changeSlides(-1);n });n document.querySelector(“.nextBtn”).addEventListener(“click”, () => {n changeSlides(1);n });n var slideIndex = 1;n showSlides(slideIndex);n function changeSlides(n) {n showSlides((slideIndex += n));n }n function currentSlide(n) {n showSlides((slideIndex = n));n }n function showSlides(n) {n var i;n var slides = document.getElementsByClassName(“Slide”);n var dots = document.getElementsByClassName(“Navdot”);n if (n > slides.length) { slideIndex = 1; }n if (n (item.style.display = “none”));n Array.from(dots).forEach(n item => (item.className = item.className.replace(” selected”, “”))n );n slides[slideIndex – 1].style.display = “block”;n dots[slideIndex – 1].className += ” selected”;n }n”}]