Exploring the Therapeutic Potential of Grapeseed Phytoconstituent Through Molecular Docking Analysis for Multiple System Atrophy Treatment

Year : 2024 | Volume : 02 | Issue : 02 | Page : 14 26
    By

    Fatima Abdul Azeez,

  1. Student, Student, Department of Biotechnology, Mar Athanasius College, Kothamangalam, Kerala, India

Abstract

Objective: Alpha-synuclein (α-Syn) aggregates are a common neurodegenerative disorder associated with Parkinson’s disease and multiple system atrophy (MSA). As a fruit that is extensively grown, grapes have several pharmacological advantages when it comes to reducing oxidative stress. Research has indicated that grape seed phytoconstituents have a major effect on α-Syn. The objective of this study is to inquire into the pharmacological characteristics and potential therapeutic applications of grape seed derivatives against the targeted protein, α-Syn. Methods: To assess their binding affinity with α-Syn, thirty distinct grape seed components and their phytoconstituents were chosen for this investigation. The PyRx virtual tool was employed for molecular docking processes, utilizing computational analysis based on the molecular structures of both phytocompounds and α-Syn. The protein structure was verified using a collection of tools, such as the PDBsum generator and BIOVIA Discovery studio program. Furthermore, ADMET filters were used to evaluate the ligands pharmacologically. Result: The molecular docking studies indicated that thiamine, the ligand, had a low binding affinity for the protein α-Syn, which was the target. Conclusion: As thiamine has been shown to be a therapeutic agent against α-Syn in Parkinson’s disease research, it may be a good choice for MSA and can be utilized to lessen its effects. To validate these results, in vitro studies are still necessary

Keywords: Multiple system atrophy, alpha-synuclein, grapeseed, thiamine, ADMET analysis, phytoconstituents, Ramachandran plot, molecular docking

[This article belongs to International Journal of Molecular Biotechnological Research ]

How to cite this article:
Fatima Abdul Azeez. Exploring the Therapeutic Potential of Grapeseed Phytoconstituent Through Molecular Docking Analysis for Multiple System Atrophy Treatment. International Journal of Molecular Biotechnological Research. 2024; 02(02):14-26.
How to cite this URL:
Fatima Abdul Azeez. Exploring the Therapeutic Potential of Grapeseed Phytoconstituent Through Molecular Docking Analysis for Multiple System Atrophy Treatment. International Journal of Molecular Biotechnological Research. 2024; 02(02):14-26. Available from: https://journals.stmjournals.com/ijmbr/article=2024/view=183839


Browse Figures

References

  1. Sakakibara R. Multiple System Atrophy. In: Liao L, Madersbacher H, editors. Neurourology. Dordrecht: Springer; 2019. 549–562. doi:10.1007/978-94-017-7509-0_65.
  2. Herrera‐Vaquero M, Heras‐Garvin A, Krismer F, Deleanu R, Boesch S, Wenning GK, et al. Signs of early cellular dysfunction in multiple system atrophy. Neuropathol Appl Neurobiol. 2021;47(2):268–282. doi:10.1111/nan.12661.
  3. Dickson DW, Liu WK, Hardy J, Farrer M, Mehta N, Uitti R, et al. Widespread alterations of α-synuclein in multiple system atrophy. Am J Pathol. 1999;155(4):1241–1251. doi:10.1016/S0002-9440(10)65226-1.
  4. Campese N, Fanciulli A, Stefanova N, Haybaeck JS, Kiechl, Wenning GK. Neuropathology of multiple system atrophy: Kurt Jellinger`s legacy. J Neural Transm. 2021;128(10):1481–1494. doi:10.1007/s00702-021-02383-3.
  5. Kaplan S, Xie H, Wang J. Estimating the prevalence and incidence of multiple system atrophy in the USA: Insights from a national claims database. Parkinsonism Relat Disord. 2023;117:105920. doi:10.1016/j.parkreldis.2023.105920.
  6. Jellinger KA. Multiple system atrophy – a clinicopathological update. Free Neuropathol. 2020;1:1–17. doi:10.17879/freeneuropathology-2020-2813.
  7. Fitzgerald E, Murphy S, Martinson HA. Alpha-synuclein pathology and the role of the microbiota in Parkinson’s disease. Front Neurosci. 2019;13. doi:10.3389/fnins.2019.00369.
  8. Srinivasan E, Chandrasekhar G, Chandrasekar P, Anbarasu K, Vickram AS, Karunakaran R, et al. Alpha-synuclein aggregation in Parkinson’s disease. Front Med. 2021;8: doi:10.3389/fmed.2021.736978.
  9. Stefanova N, Bücke P, Duerr S, Wenning GK. Multiple system atrophy: an update. Lancet Neurol. 2009;8(12):1172–1178. doi:10.1016/S1474-4422(09)70288-1.
  10. Compagnoni GM, Fonzo AD. Understanding the pathogenesis of multiple system atrophy: state of the art and future perspectives. Acta Neuropathol Commun. 2019;7(1):113. doi:10.1186/s40478-019-0730-6.01
  11. Lee HJ, Ricarte D, Ortiz D, Lee SJ. Models of multiple system atrophy. Exp Mol Med. 2019;51(11):1–10. doi:10.1038/s12276-019-0346-8.
  12. Koga S, Dickson DW. Recent advances in neuropathology, biomarkers and therapeutic approach of multiple system atrophy. J Neurol Neurosurg Psychiatry. 2018;89(2):175–184. doi:10.1136/jnnp-2017-315813
  13. Yazawa I, Giasson BI, Sasaki R, Zhang B, Joyce S, Uryu K, et al. Mouse model of multiple system atrophy α-synuclein expression in oligodendrocytes causes glial and neuronal degeneration. Neuron. 2005;4596):847–859. doi:10.1016/j.neuron.2005.01.032.
  14. Farooqui A, Farooqui T, Madan A, Ong JHJ, Ong WY. Ayurvedic medicine for the treatment of dementia: mechanistic aspects. Evid Based Complement Alternat Med. 2018. doi:10.1155/2018/2481076.
  15. Kumar S, Dobos GJ, Rampp T. The significance of Ayurvedic medicinal plants. J Evid Based Complement Alternat Med. 2017;22(3):494–501. doi:10.1177/2156587216671392.
  16. Chavan SS, Kesari M. Trust-(Copyright-2022) [Online]. 2022;1. Maharatta. 2022. Available from: www.mahratta.org.
  17. Caetano SS, de Moura M, Sobreira AC, Barroso AB, Pinheiro-Sant’Ana HM, Della Lucia CM, et al. Characterization and bioactive compounds of organic Bordeaux grape seed oil and flours (Vitis labrusca L.). Res Soc Dev. 2022;11(14):e55111435888. doi:10.33448/rsd-v11i14.35888.
  18. Garavaglia J, Markoski MM, Oliveira A, Marcadenti A. Grape seed oil compounds: Biological and chemical actions for health. Nutr Metab Insights. 2016;9:NMI-S32910. doi:10.4137/NMI.S32910.
  19. Gupta M, Dey S, Marbaniang D, Pal P, Ray S, Mazumder B. Grape seed extract: having a potential health benefits. J Food Sci Technol. 2020;57(4):1205–1215. doi:10.1007/s13197-019-04113-w.
  20. Hey G, Nair N, Klann E, Gurrala A, Safarpour D, Mai V, et al. Therapies for Parkinson’s disease and the gut microbiome: evidence for bidirectional connection. Front Aging Neurosci. 2023;15:1151850. doi:10.3389/fnagi.2023.1151850.
  21. Fandy SJ. Grape seed extract’s neuroprotective effect and parkinson’s disease: A systematic review. Malang Neurol J. 2023;9(1):44–51. doi:10.21776/ub.mnj.2023.009.01.9.
  22. Polegato BF, Pereira AG, Azevedo PS, Costa NA, Zornoff LA, Paiva SA, et al. Role of thiamin in health and disease. Nutr Clin Pract. 2019;34(4):558–564. doi:10.1002/ncp.10234.
  23. Costantini A, Pala MI, Grossi E, Mondonico S, Cardelli LE, Jenner C, et al. Long-term treatment with high-dose thiamine in Parkinson disease: An open-label pilot study. J Altern Complement Med. 2015;21(12):740–747. doi:10.1089/acm.2014.0353.
  24. Luong KVQ, Nguyễn LTH. The beneficial role of thiamine in Parkinson disease. CNS Neurosci Ther. 2013;19(7):461–468. doi:10.1111/cns.12078.
  25. Rai SN, Singh P, Steinbusch HW, Vamanu E, Ashraf G, Singh MP. The role of vitamins in neurodegenerative disease: An update. Biomed. 2021;9(10):1284. doi:10.3390/biomedicines9101284.
  26. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RB, Aparna SR, Mangalapandi P, et al. IMPPAT: A curated database of Indian medicinal plants, phytochemistry and therapeutics. Sci Rep. 2018;8(1):4329. doi:10.1038/s41598-018-22631-z.
  27. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–D1213. doi:10.1093/nar/gkv951.
  28. Tripathi P, Ghosh S, Talapatra SN. Bioavailability prediction of phytochemicals present in Calotropis procera (Aiton) R. Br. by using Swiss-ADME tool. World Sci News. 2019;131:147–163.
  29. Ivanović V, Rančić M, Arsić B, Pavlović A. Lipinski’s rule of five, famous extensions and famous exceptions. Chemia Naissensis. 2020;3(1):171–177.
  30. Prasanna S, Doerksen RJ. Topological polar surface area: A useful descriptor in 2D-QSAR. Curr Med Chem. 2008;16(1):21–41. doi:10.2174/092986709787002817.
  31. Chandrasekaran B, Abed SN, Al-Attraqchi O, Kuche K, Tekade RK. Computer-Aided Prediction of Pharmacokinetic (ADMET) Properties. In: Tekade RK, editor. Dosage Form Design Parameters. 1st edition. Amsterdam: Elsevier; 2018. 731–755. doi:10.1016/B978-0-12-814421-3.00021-X.
  32. Rani N, Khare N, Jha AK. Molecular docking study of dihydrohelenalin against DNMT1 to treat oral cancer. Int J Res Anal Rev. 2020;7(3):427–437.
  33. Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concept. 2010;1(3–4):271–283. doi:10.1515/bmc.2010.022.
  34. Kumar P, Arya A. Ramachandran plot-A simplified approach [Online]. Available from: net/profile/Pranav-Kumar36/publication/330158666_Ramachandran_plot_A_simplified_approach/links/5c304d76458515a4c70d377b/Ramachandran-plot-A-simplified-approach.pdf.
  35. Laskowski RA. Enhancing the functional annotation of PDB structures in PDBsum using key figures extracted from the literature. Bioinform. 20074;23(14):1824–1827. doi:10.1093/bioinformatics/btm085.
  36. Pawar RP, Rohane SH. Role of autodock vina in PyRx molecular docking. Asian J. Res Chem. 2021;14(2):132–134. doi:10.5958/0974-4150.2021.00024.9.
  37. Agarwal S, Mehrotra R. An overview of molecular docking. JSM Chem. 2016;49(2):1024.
  38. Tahir M, Baharuddin M, Najib A. In silico screening of brotowali (Tinospora crispa L.) chemical compounds as α-glucosidase inhibitor using the pyrx program. AIP Conf Proc. 2023;2595:050009. doi:10.1063/5.0123693.
  39. Valdinocci D, Radford RAW, Goulding M, Hayashi J, Chung RS, Pountney DL. Extracellular interactions of Alpha-synuclein in multiple system atrophy. Int J Mol Sci. 2018;19(12):4129. doi:10.3390/ijms19124129.

Regular Issue Subscription Original Research
Volume 02
Issue 02
Received 28/10/2024
Accepted 05/11/2024
Published 18/11/2024
Publication Time 21 Days



My IP

PlumX Metrics