Comparative Analysis of Kinetic Models for Simulation of Biogas Production from Cow Dung and Fruit Waste via Anaerobic Digestion

Year : 2025 | Volume : 02 | Issue : 01 | Page : 47-63
    By

    Abdulwadud Yusuf Abdulkarim,

  • Hashim Adamu,

  • Akorode Abdulafeez Olayinka,

  • Oyinkan Ilemore,

  • Kish Elisha Dokas,

  • Abdulwadud Yusuf Abdulkarim,

  1. Senior Lecturer, Department of Chemical Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
  2. Lecturer II, Armament Engineering Department, Air Force Institute of Technology, Kaduna, Nigeria
  3. Assistant Lecturer, Armament Engineering Department, Air Force Institute of Technology, Kaduna, Nigeria
  4. Lecturer II, Armament Engineering Department, Air Force Institute of Technology, Kaduna, Nigeria
  5. Assistant Lecturer, Armament Engineering Department, Air Force Institute of Technology, Kaduna, Nigeria
  6. Lecturer I, Armament Engineering Department, Air Force Institute of Technology, Kaduna, Nigeria

Abstract

This study investigates the optimization of biogas and biofertilizer production from cow dung and fruit waste through anaerobic digestion, utilizing various microbial growth kinetic models. Simulations were conducted using the Monod, Moser, Contois, and Tessier models to predict biogas yield and assess model accuracy. Results indicated that the Tessier model provided the closest fit to experimental data, with a biogas yield of 0.45 m³/kg VS, while the Monod model overestimated yields at 0.65 m³/kg VS. The Moser and Contois models produced more realistic estimates of 0.50 m³/kg VS and 0.48 m³/kg VS, respectively. Additionally, the cow dung’s C/N ratio of 30:1, higher than the optimal 20–25:1 range, suggested its greater suitability for biofertilizer production. This study underscores the importance of selecting appropriate kinetic models for accurate simulation and highlights the potential for optimizing feedstock composition to enhance biogas yields, thereby contributing valuable insights into the modeling and optimization of anaerobic digestion processes for sustainable energy production. These findings highlight the critical role of selecting appropriate kinetic models for accurately simulating anaerobic digestion processes and optimizing feedstock composition to enhance biogas yields.

Keywords: Anaerobic digestion, biogas production, biofertilizer, kinetic models, cow dung, fruit waste.

[This article belongs to International Journal of Membranes ]

How to cite this article:
Abdulwadud Yusuf Abdulkarim, Hashim Adamu, Akorode Abdulafeez Olayinka, Oyinkan Ilemore, Kish Elisha Dokas, Abdulwadud Yusuf Abdulkarim. Comparative Analysis of Kinetic Models for Simulation of Biogas Production from Cow Dung and Fruit Waste via Anaerobic Digestion. International Journal of Membranes. 2025; 02(01):47-63.
How to cite this URL:
Abdulwadud Yusuf Abdulkarim, Hashim Adamu, Akorode Abdulafeez Olayinka, Oyinkan Ilemore, Kish Elisha Dokas, Abdulwadud Yusuf Abdulkarim. Comparative Analysis of Kinetic Models for Simulation of Biogas Production from Cow Dung and Fruit Waste via Anaerobic Digestion. International Journal of Membranes. 2025; 02(01):47-63. Available from: https://journals.stmjournals.com/ijm/article=2025/view=198599


References

  1. Amin FR, Khalid H, El-Mashad HM, Chen C, Liu G, Zhang R. Functions of bacteria and archaea participating in the bioconversion of organic waste for methane production. Sci Total Environ. 2021;763:143007.
  2. Cyprowski M, Stobnicka-Kupiec A, Ławniczek-Wałczyk A, Bakal-Kijek A, Gołofit-Szymczak M, Górny RL. Anaerobic bacteria in wastewater treatment plant. Int Arch Occupat Environ Health. 2018;91:571–579.
  3. Schön M. Numerical Modelling of Anaerobic Digestion Processes in Agricultural Biogas Plants. BoD–Books on Demand; 2010.
  4. Owamah HI, Alfa MI, Onokwai AO. Preliminary evaluation of the effect of chicken feather with no major pre-treatment on biogas production from horse dung. Environ Nanotech Monitor Manag. 2020;14:100347.
  5. Obileke K, Nwokolo N, Makaka G, Mukumba P, Onyeaka H. Anaerobic digestion: Technology for biogas production as a source of renewable energy—A review. Energy Environ. 2021;32(2):191–225.
  6. Wolf, C. Simulation, optimization and instrumentation of agricultural biogas plants [Doctoral dissertation]. Ireland: National University of Ireland Maynooth; 2013.
  7. Andriani D, Wresta A, Atmaja TD, Saepudin A. A review on optimization production and upgrading biogas through CO 2 removal using various techniques. Appl Biochem Biotechnol. 2014;172:1909–1928.
  8. Zhang T, Liu L, Song Z, Ren G, Feng Y, Han X, Yang G. Biogas production by co-digestion of goat manure with three crop residues. PloSOne. 2013;8(6):e66845.
  9. Nie E, He P, Zhang H, Hao L, Shao L, Lü F. How does temperature regulate anaerobic digestion? Renew Sustain Energy Rev. 2021;150:111453.
  10. Alfa MI, Adie DB, Igboro SB, Oranusi US, Dahunsi SO, Akali DM. Assessment of biofertilizer quality and health implications of anaerobic digestion effluent of cow dung and chicken droppings. Renew Energy. 2014;63:681–686.
  11. Kumar DJ, Mishra RK, Chinnam S, Binnal P, Dwivedi N. A comprehensive study on anaerobic digestion of organic solid waste: A review on configurations, operating parameters, techno-economic analysis and current trends. Biotechnol Notes. 2024.
  12. Hossain MS, Karim TU, Onik MH, Kumar D, Rahman MA, Yousuf A, Uddin MR. Impact of temperature, inoculum flow pattern, inoculum type, and their ratio on dry anaerobic digestion for biogas production. Sci Rep. 2022;12(1):6162.
  13. Lawal AA, Dzivama AU, Wasinda MK. Effect of inoculum to substrate ratio on biogas production of sheep paunch manure. Res Agric Eng. 2016;62(1):8–14.
  14. Abdulkarim AY, Abdulsalam S, El-Nafaty UA, Muhammad IM. Bio-fertilizers via co-digestion: a review. Traektoriâ Nauki= Path of Science. 2019;5(6):3001–3011.
  15. Lim JW, Park T, Tong YW, Yu Z. The microbiome driving anaerobic digestion and microbial analysis. Adva Bioenergy. 2020;5:1–61.
  16. Yu L, Wensel PC, Ma J, Chen S. Mathematical modeling in anaerobic digestion (AD). J Bioremed Biodeg S. 2013;4(2).
  17. Simeonov I, Karakashev D. Mathematical modelling of the anaerobic digestion including the syntrophic acetate oxidation. IFAC Proc. 2012;45(2):309–314.
  18. Kunatsa T, Xia X. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Bioresour Technol. 2022;344:126311.
  19. Tejasen S, Taruyanon K. Modelling of two-stage anaerobic treating wastewater from a molasses-based ethanol distillery with the IWA anaerobic digestion model no. 1. Eng J. 2010;14(1):25–36.
  20. Kujawski O, Steinmetz H. Anaerobic digestion model based on mass balances, development, implementation and validation. In 13th World Congress on Anaerobic Digestion. 2013. pp. 1–4.
  21. Sigmon K, Davis TA. MATLAB Primer. Boca Raton, Florida, USA: Taylor and Francis Group; 2004. pp. 1–232.
  22. Fedailaine M, Moussi K, Khitous M, Abada S, Saber M, Tirichine N. Modeling of the anaerobic digestion of organic waste for biogas production. Proc Comput Sci. 2015;52:730–737.
  23. Weinrich S, Nelles M. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1)–Model development and stoichiometric analysis. Bioresour Technol. 2021;333:125124.
  24. Menzel T, Neubauer P, Junne S. Role of microbial hydrolysis in anaerobic digestion. Energies. 2020;13(21):5555.
  25. Annuar MS, Tan IK, Ibrahim S, Ramachandran KB. A kinetic model for growth and biosynthesis of medium-chain-length poly-(3-hydroxyalkanoates) in Pseudomonas putida. Brazilian J Chem Eng. 2008;25:217–228.
  26. Zhi-Wu W, Yebo L. A theoretical derivation of the Contois equation for kinetic modeling of the microbial degradation of insoluble substrates. Biochem Eng J. 2014;82(1):134–138.
  27. Nwabanne JT, Onukwuli OD, Ifeakandu CM. Biokinetics of anaerobic digestion of municipal waste. Internat J Environ Res. 2009;3(4):511–516.
  28. Ngumah C, Ogbulie J, Orji J, Amadi E. Potential of organic waste for biogas and biofertilizer production in Nigeria. Environ Res Eng Manag. 2013;63(1):60–66.
  29. Obileke K, Mamphweli S, Meyer EL, Makaka G, Nwokolo N. Development of a mathematical model and validation for methane production using cow dung as substrate in the underground biogas digester. Processes. 2021;9(4):643.
  30. Urbina A, Hinnerichs TD, Hunter P, O’Gorman CC, Rutherford BM, Paez TL. Validation of mathematical models: an overview of the process. 2005.
  31. Salman M, Abdel-Hameed ES, Bazaid SA, Al-Shamrani MG. Atomic absorption spectrometry and flame photometry for determination of minerals elements in fresh pomegranate fruit juice. Der Pharma Chemica. 2014;6(6):149–155.
  32. Burhanuddin MF. Study of COD removal by anaerobic digestion using mixed culture from sewage [ Bachelor thesis]. Malaysia: Universiti Malaysia Pahang; 2010.
  33. Choi Y, Ryu J, Lee SR. Influence of carbon type and carbon to nitrogen ratio on the biochemical methane potential, pH, and ammonia nitrogen in anaerobic digestion. J Animal Sci Technol. 2020;62(1):74.
  34. Gashaw A. Co-digestion of municipal organic wastes with night soil and cow dung for biogas production: A Review. Afr J Biotechnol. 2016;15(2):32–44.
  35. Shahbaz M, Ammar M, Korai RM, Ahmad N, Ali A, Khalid MS, Zou D, Li X. Impact of C/N ratios and organic loading rates of paper, cardboard and tissue wastes in batch and CSTR anaerobic digestion with food waste on their biogas production and digester stability. SN Appl Sci. 2020;2:1–3.
  36. Orhorhoro EK, Orhorhoro OW, Ebunilo PO. Analysis of the effect of carbon/nitrogen (C/N) ratio on the performance of biogas yields for non-uniform multiple feedstock availability and composition in Nigeria. Int J Innov Sci Eng Technol. 2016;3(5):119–126.
  37. Kiyasudeen S K, Ibrahim MH, Quaik S, Ahmed Ismail S, Ibrahim MH, Quaik S, Ismail SA. An introduction to anaerobic digestion of organic wastes. Prospects of organic waste management and the significance of earthworms. 2016:23–44.
  38. Abdullah NA, Nayan NA, Kamaludin NH, Idris ZM, Tompang MF. Cell growth kinetics of Aspergillus Oryzae in industrial natural rubber effluent serum. ARPN J Eng Appl Sci. 2006;11(4):2687–2692.
  39. Maier RM, Pepper IL. Bacterial Growth. Environmental Microbiology. Cambridge, Massachusetts, USA: Academic Press; 2015. 37–56.
  40. Muloiwa M, Nyende-Byakika S, Dinka M. Comparison of unstructured kinetic bacterial growth models. South Afr J Chem Eng. 2020;33:141–50.
  41. David A. Science and Principles of Anaerobic Processing (Anaerobic digestion). In Municipal Solid Waste Organics Processing Technical Document. Gatineau, Quebec, Canada: Environment Canada; 2013. pp. 4–10.
  42. Momoh OY, Anyata BU, Saroj DP. Development of simplified anaerobic digestion models (SADM’s) for studying anaerobic biodegradability and kinetics of complex biomass. Biochem Eng J. 2013;79:84–93.

Regular Issue Subscription Original Research
Volume 02
Issue 01
Received 22/10/2024
Accepted 02/12/2024
Published 02/01/2025
Publication Time 72 Days


My IP

PlumX Metrics