This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Samiddha Banerjee,
Abstract
CRISPR-Cas technology has emerged as a transformative tool in modern molecular biology, revolutionizing both fundamental research and clinical applications. This RNA-guided gene- editing system enables precise and efficient genomic modifications, offering unprecedented potential for addressing genetic disorders, infectious diseases, and oncological conditions through innovative therapeutic interventions. The inherent specificity and programmability of CRISPR-Cas systems have facilitated breakthroughs in diverse fields, including precision medicine, regenerative therapies, and immuno-oncology. Beyond its therapeutic applications, CRISPR-Cas technology plays a critical role in agricultural biotechnology, environmental remediation, and synthetic biology, enabling the development of genetically modified organisms with improved traits, biosensors for pathogen detection, and novel bioengineered systems for sustainable bio-production. The ability to introduce targeted modifications at single-nucleotide resolution has expanded the frontiers of functional genomics, allowing researchers to systematically investigate gene function, regulatory networks, and epigenetic modifications with unprecedented accuracy. In contemporary medical therapies, CRISPR-Cas-based approaches are being explored for correcting monogenic disorders, engineering immune cells for adoptive cell therapies, and developing novel strategies for viral disease eradication. CRISPR-based diagnostic tools have also been harnessed for rapid, cost-effective detection of pathogenic infections and cancer biomarkers, paving the way for early disease intervention and personalized treatment regimens. Furthermore, theranostic applications integrating CRISPR-Cas technology with advanced imaging modalities are poised to enhance precision medicine by enabling simultaneous disease diagnosis and targeted therapeutic delivery. This article delves into the extensive impact of CRISPR-Cas systems on modern therapeutic paradigms, particularly in the fields of molecular diagnostics, targeted cancer therapies, and antiviral theranostics. Additionally, it examines the broader implications of this revolutionary technology for future biomedical research, ethical considerations, and translational medicine.
Keywords: CRISPR-Cas, immuno-oncology, Molecular scissors, gRNA,
[This article belongs to International Journal of Genetic Modifications and Recombinations ]
Samiddha Banerjee. Crispr Cas – Revolutionizing modern therapies and beyond. International Journal of Genetic Modifications and Recombinations. 2025; 03(01):-.
Samiddha Banerjee. Crispr Cas – Revolutionizing modern therapies and beyond. International Journal of Genetic Modifications and Recombinations. 2025; 03(01):-. Available from: https://journals.stmjournals.com/ijgmr/article=2025/view=209851
References
1. Wu SS, Li QC, Yin CQ, Xue W, Song CQ. Advances in CRISPR/Cas-based gene therapy in human genetic diseases. Theranostics. 2020;10(10):4374.
2. Strich JR, Chertow DS. CRISPR-Cas biology and its application to infectious diseases. Journal of clinical microbiology. 2019 Apr;57(4):10-128.
3. Cyranoski D. CRISPR gene-editing tested in a person for the first time. Nature 2016;539:479. doi:10.1038/ nature.2016.20988.
4. Adachi H, Hengesbach M, Yu YT, Morais P. From Antisense RNA to RNA Modification: Therapeutic Potential of RNA-Based Technologies. Biomedicines 2021, 9, 550 [Internet]. 2021
5. Fix SM, Jazaeri AA, Hwu P. Applications of CRISPR genome editing to advance the next generation of adoptive cell therapies for cancer. Cancer discovery. 2021 Mar 1;11(3):560-74.
6. Van Opijnen T, Jeeninga RE, Boerlijst MC, Pollakis GP, Zetterberg V, Salminen M, Berkhout B. Human immunodeficiency virus type 1 subtypes have a distinct long terminal repeat that determines the replication rate in a host-cell-specific manner. Journal of virology. 2004 Apr 1;78(7):3675-83.
7. Ebina H, Misawa N, Kanemura Y, Koyanagi Y. Harnessing the CRISPR/Cas9 system to disrupt latent HIV-1 provirus. Scientific reports. 2013 Aug 26;3(1):2510.
8. Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu W, Xu F, Mei S, Liu X, Zhang D, Wei L. CRISPR-Cas13a inhibits HIV-1 infection. Molecular Therapy-Nucleic Acids. 2020 Sep 4;21:147-55.
9. Nguyen H, Wilson H, Jayakumar S, Kulkarni V, Kulkarni S. Efficient inhibition of HIV using CRISPR/Cas13d nuclease system. Viruses. 2021 Sep 16;13(9):1850.
10. Faivre N, Verollet C, Dumas F. The chemokine receptor CCR5: multi-faceted hook for HIV-1. Retrovirology. 2024 Jan 23;21(1):2.
11. Khamaikawin W, Saisawang C, Tassaneetrithep B, Bhukhai K, Phanthong P, Borwornpinyo S, Phuphuakrat A, Pasomsub E, Chaisavaneeyakorn S, Anurathapan U, Apiwattanakul N. CRISPR/Cas9 genome editing of CCR5 combined with C46 HIV-1 fusion inhibitor for cellular resistant to R5 and X4 tropic HIV-1. Scientific Reports. 2024 May 13;14(1):10852.
12. Karimova M, Beschorner N, Dammermann W, Chemnitz J, Indenbirken D, Bockmann JH, Grundhoff A, Lüth S, Buchholz F, Wiesch JS, Hauber J. CRISPR/Cas9 nickase-mediated disruption of hepatitis B virus open reading frame S and X. Scientific reports. 2015 Sep 3;5(1):13734.
13. Ramanan V, Shlomai A, Cox DB, Schwartz RE, Michailidis E, Bhatta A, Scott DA, Zhang F, Rice CM, Bhatia SN. CRISPR/Cas9 cleavage of viral DNA efficiently suppresses hepatitis B virus. Scientific reports. 2015 Jun 2;5(1):10833.
14. Tornesello AL, Tagliamonte M, Tornesello ML, Buonaguro FM, Buonaguro L. Nanoparticles to improve the efficacy of peptide-based cancer vaccines. Cancers. 2020 Apr 23;12(4):1049.
15. Zhao Z, Shang P, Mohanraju P, Geijsen N. Prime editing: advances and therapeutic applications. Trends in Biotechnology. 2023 Aug 1;41(8):1000-12.
16. Jubair L, Fallaha S, McMillan NA. Systemic delivery of CRISPR/Cas9 targeting HPV oncogenes is effective at eliminating established tumors. Molecular Therapy. 2019 Dec 4;27(12):2091-9.
17. Gao C, Wu P, Yu L, Liu L, Liu H, Tan X, Wang L, Huang X, Wang H. The application of CRISPR/Cas9 system in cervical carcinogenesis. Cancer Gene Therapy. 2022 May;29(5):466-74.
18. Fareh M, Zhao W, Hu W, Casan JM, Kumar A, Symons J, Zerbato JM, Fong D, Voskoboinik I, Ekert PG, Rudraraju R. Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance. Nature communications. 2021 Jul 13;12(1):4270.
19. Wang L, Zhou J, Wang Q, Wang Y, Kang C. Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein. Theranostics. 2021;11(2):649.
20. To KK, Sridhar S, Chiu KH, Hung DL, Li X, Hung IF, Tam AR, Chung TW, Chan JF, Zhang AJ, Cheng VC. Lessons learned 1 year after SARS-CoV-2 emergence leading to COVID-19 pandemic. Emerging microbes & infections. 2021 Jan 1;10(1):507-35.
21. Zhu X, Wang X, Li S, Luo W, Zhang X, Wang C, Chen Q, Yu S, Tai J, Wang Y. Rapid, ultrasensitive, and highly specific diagnosis of COVID-19 by CRISPR-based detection. ACS sensors. 2021 Mar 1;6(3):881-8.
22. Vatankhah M, Azizi A, Sanajouyan Langeroudi A, Ataei Azimi S, Khorsand I, Kerachian MA, Motaei J. CRISPR-based biosensing systems: a way to rapidly diagnose COVID-19. Critical reviews in clinical laboratory sciences. 2021 May 19;58(4):225-41.
23. Ooi KH, Liu MM, Tay JW, Teo SY, Kaewsapsak P, Jin S, Lee CK, Hou J, Maurer-Stroh S, Lin W, Yan B. An engineered CRISPR-Cas12a variant and DNA-RNA hybrid guides enable robust and rapid COVID-19 testing. Nature communications. 2021 Mar 19;12(1):1739.
24. Palaz F, Kalkan AK, Tozluyurt A, Ozsoz M. CRISPR-based tools: Alternative methods for the diagnosis of COVID-19. Clinical biochemistry. 2021 Mar 1;89:1-3.
25. Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, Pande T. Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell. 2020 May 14;181(4):865-76.
26. Lotfi M, Rezaei N. CRISPR/Cas13: A potential therapeutic option of COVID-19. Biomedicine & Pharmacotherapy. 2020 Nov 1;131:110738.
27. Jackson M, Marks L, May GH, Wilson JB. The genetic basis of disease. Essays in biochemistry. 2018 Dec 3;62(5):643-723.
28. Roth TL, Marson A. Genetic disease and therapy. Annual Review of Pathology: Mechanisms of Disease. 2021 Jan 24;16(1):145-66.
29. Miller KE, Hoyt R, Rust S, Doerschuk R, Huang Y, Lin SM. The financial impact of genetic diseases in a pediatric accountable care organization. Frontiers in Public Health. 2020 Feb 28;8:58.
30. Yang Y, Xu J, Ge S, Lai L. CRISPR/Cas: advances, limitations, and applications for precision cancer research. Frontiers in medicine. 2021 Mar 3;8:649896.
31. Chanchal DK, Chaudhary JS, Kumar P, Agnihotri N, Porwal P. CRISPR-Based therapies: revolutionizing Drug Development and Precision Medicine. Current Gene Therapy. 2024 Jun 1;24(3):193-207.
32. Liu W, Li L, Jiang J, Wu M, Lin P. Applications and challenges of CRISPR-Cas gene-editing to disease treatment in clinics. Precision clinical medicine. 2021 Sep;4(3):179-91.
33. Pavani G, Fabiano A, Laurent M, Amor F, Cantelli E, Chalumeau A, Maule G, Tachtsidi A, Concordet JP, Cereseto A, Mavilio F. Correction of β-thalassemia by CRISPR/Cas9 editing of the α-globin locus in human hematopoietic stem cells. Blood advances. 2021 Mar 9;5(5):1137-53.
34. Fleming RE, Britton RS, Waheed A, Sly WS, Bacon BR. Pathophysiology of hereditary hemochromatosis. InSeminars in liver disease 2005 Nov (Vol. 25, No. 04, pp. 411-419). Copyright© 2005 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA..
35. Rovai A, Chung B, Hu Q, Hook S, Yuan Q, Kempf T, Schmidt F, Grimm D, Talbot SR, Steinbrück L, Götting J. In vivo adenine base editing reverts C282Y and improves iron metabolism in hemochromatosis mice. Nature Communications. 2022 Sep 5;13(1):5215.
36. Cutting GR, Engelhardt J, Zeitlin PL. Genetics and pathophysiology of cystic fibrosis. InKendig’s Disorders of the Respiratory Tract in Children 2019 Jan 1 (pp. 757-768). Elsevier.
37. Porter JJ, Lueck JD. A cystic fibrosis gene editing approach that is on target. Molecular Therapy-Nucleic Acids. 2024 Jun 11;35(2).
38. Sheppard O, Coleman M. Alzheimer’s disease: etiology, neuropathology and pathogenesis. Exon Publications. 2020 Dec 19:1-21.
39. Park H, Oh J, Shim G, Cho B, Chang Y, Kim S, Baek S, Kim H, Shin J, Choi H, Yoo J. In vivo neuronal gene editing via CRISPR–Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer’s disease. Nature neuroscience. 2019 Apr;22(4):524-8.
40. Justiz-Vaillant AA, Gopaul D, Akpaka PE, Soodeen S, Arozarena Fundora R. Severe Combined Immunodeficiency—Classification, Microbiology Association and Treatment. Microorganisms. 2023 Jun 15;11(6):1589.
41. Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. Molecular Therapy-Nucleic Acids. 2023 Mar 14;31:105-21.
42. Lee SH, Yu J, Hwang GH, Kim S, Kim HS, Ye S, Kim K, Park J, Park DY, Cho YK, Kim JS. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene. 2017 Dec;36(49):6823-9.
43. Nachmanson D, Lian S, Schmidt EK, Hipp MJ, Baker KT, Zhang Y, Tretiakova M, Loubet-Senear K, Kohrn BF, Salk JJ, Kennedy SR. Targeted genome fragmentation with CRISPR/Cas9 enables fast and efficient enrichment of small genomic regions and ultra-accurate sequencing with low DNA input (CRISPR-DS). Genome Research. 2018 Oct 1;28(10):1589-99.
44. Shin G, Grimes SM, Lee H, Lau BT, Xia LC, Ji HP. CRISPR–Cas9-targeted fragmentation and selective sequencing enable massively parallel microsatellite analysis. Nature communications. 2017 Feb 7;8(1):14291.
45. Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018 Apr 27;360(6387):436-9.
46. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, Zhang F. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018 Apr 27;360(6387):439-44.
47. Ravichandran M, Maddalo D. Applications of CRISPR-Cas9 for advancing precision medicine in oncology: from target discovery to disease modeling. Frontiers in Genetics. 2023 Oct 16;14:1273994.
48. Tabar V, Studer L. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Reviews Genetics. 2014 Feb;15(2):82-92.
49. Zhang Z, Zhang Y, Gao F, Han S, Cheah KS, Tse HF, Lian Q. CRISPR/Cas9 genome-editing system in human stem cells: current status and future prospects. Molecular Therapy-Nucleic Acids. 2017 Dec 15;9:230-41.
50. Li HL, Fujimoto N, Sasakawa N, Shirai S, Ohkame T, Sakuma T, Tanaka M, Amano N, Watanabe A, Sakurai H, Yamamoto T. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Stem cell reports. 2015 Jan 13;4(1):143-54.
51. Jin Y, Shen Y, Su X, Weintraub NL, Tang Y. Effective restoration of dystrophin expression in iPSC Mdx-derived muscle progenitor cells using the CRISPR/Cas9 system and homology-directed repair technology. Computational and structural biotechnology journal. 2020 Jan 1;18:765-73.
52. Gähwiler EK, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and genome editing technologies for precision cardiovascular tissue engineering. Frontiers in Cell and Developmental Biology. 2021 Jun 28;9:639699.
53. Deuse T, Hu X, Gravina A, Wang D, Tediashvili G, De C, Thayer WO, Wahl A, Garcia JV, Reichenspurner H, Davis MM. Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology. 2019 Mar;37(3):252-8.
54. Mouradian S, Cicciarello D, Lacoste N, Risson V, Berretta F, Le Grand F, Rose N, Simonet T, Schaeffer L, Scionti I. LSD1 controls a nuclear checkpoint in Wnt/β-Catenin signaling to regulate muscle stem cell self-renewal. Nucleic Acids Research. 2024 Apr 24;52(7):3667-81.
55. Hsu MN, Chang YH, Truong VA, Lai PL, Nguyen TK, Hu YC. CRISPR technologies for stem cell engineering and regenerative medicine. Biotechnology advances. 2019 Dec 1;37(8):107447.
56. Azeez SS, Hamad RS, Hamad BK, Shekha MS, Bergsten P. Advances in CRISPR-Cas technology and its applications: Revolutionising precision medicine. Frontiers in Genome Editing. 2024 Dec 12;6:1509924.
57. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nature protocols. 2019 Oct;14(10):2986-3012.
58. Bhardwaj P, Kant R, Behera SP, Dwivedi GR, Singh R. Next-generation diagnostic with CRISPR/Cas: beyond nucleic acid detection. International Journal of Molecular Sciences. 2022 May 27;23(11):6052.
59. Zahra A, Shahid A, Shamim A, Khan SH, Arshad MI. The SHERLOCK platform: an insight into advances in viral disease diagnosis. Molecular Biotechnology. 2023 May;65(5):699-714.
60. Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F, Collins JJ. CRISPR-based diagnostics. Nature Biomedical Engineering. 2021 Jul;5(7):643-56.
Volume | 03 |
Issue | 01 |
Received | 23/01/2025 |
Accepted | 18/02/2025 |
Published | 09/05/2025 |
Publication Time | 106 Days |