Deciphering the Roles of Estrogen Receptors and 27-Hydroxycholesterol in BC Progression

Year : 2024 | Volume : 02 | Issue : 02 | Page : 18 26
    By

    Tombin Thomas,

  1. Biotechnologist, Geochem Laboratories Private Limited, Aroor, Kerala, India

Abstract

Breast cancer (BC) ranks among the top causes of cancer-related deaths in women worldwide. Many risk factors of BC are linked to estrogen. Experiments of Beatson in 1896 show the role of steroid hormones as major determinant in BC. Action of steroid hormones is mediated by their receptors including Estrogen receptors (ERs). ERs are part of a subfamily of ligand-regulated transcription factors. Their primary role is to translate hormone signals into a wide range of physiological responses across different organs. One of the widely studied ER is ER-alpha. One of the major strategies for the treatment of BC is the prevention of the expression of ER-alpha by using antiestrogens, such as tamoxifen and ICI 182,780. The complete understanding of ER-alpha function and inhibition has been gone far by new discoveries of ER-alpha mutations, coregulatory proteins modulating ER activity, alternative downstream signaling pathways, and crosstalk with other intracellular signal transduction pathways. Since hormone therapy based on ER-alpha involves the utilization of antiestrogens and aromatase inhibitors, on other hand 27-hydroxycholesterol (27HC) can bind and activate ERs, which make them supportive to BC. 27HC is synthesized from cholesterol by the enzyme sterol 27-hydroxylase, also known as cytochrome P450 27A1 (CYP27A1). Since the presence 27HC is directly proportional to the presence of cholesterol, their role in obesity associated BC is evident. 27-HC also involved auxiliary targets that facilitate the metastatic phenotype. 27-HC is not engaging in metastasis through ER receptors, instead the act by the activation of the liver X receptors. Amy E. Baek et al. came forward to address this possibility through an experiment with mice. The results of these experiments showed that mice pretreated with 27HC developed significantly more metastatic nodules compared to those pretreated with a placebo.

Keywords: 27-hydroxycholesterol, breast cancer, estrogen receptors, SERM, X receptors

[This article belongs to International Journal of Genetic Modifications and Recombinations ]

How to cite this article:
Tombin Thomas. Deciphering the Roles of Estrogen Receptors and 27-Hydroxycholesterol in BC Progression. International Journal of Genetic Modifications and Recombinations. 2024; 02(02):18-26.
How to cite this URL:
Tombin Thomas. Deciphering the Roles of Estrogen Receptors and 27-Hydroxycholesterol in BC Progression. International Journal of Genetic Modifications and Recombinations. 2024; 02(02):18-26. Available from: https://journals.stmjournals.com/ijgmr/article=2024/view=190771


Browse Figures

References

1. Sommer S, Fuqua SAW. Estrogen receptor and breast cancer. Semin Cancer Biol. 2001;11(5):339–352. doi: 10.1006/scbi.2001.0389.
2. Coleman M, Quaresma M, Berrino F, Lutz JM, Angelis R, Capocaccia R, et al. Cancer survival in five continents: A worldwide population-based study (CONCORD). Lancet Oncol. 2008;9(8):730–756. doi: 10.1016/S1470-2045(08)70179-7.
3. Ozbun MA, Butel JS. Tumor suppressor p53 mutations and breast cancer: A critical analysis. Adv Cancer Res. 1995;66:71–141. doi: 10.1016/s0065-230x(08)60252-3.
4. Varley JM, Armour J, Swallow JE, Jeffreys AJ, Ponder BA, T’Ang A, et al. The retinoblastoma gene is frequently altered leading to loss of expression in primary breast tumours. Oncogene. 1989;4(6):725–729.
5. Peng J, Sengupta S, Jordan VC. Potential of selective estrogen receptor modulators as treatments and preventives of breast cancer. Anti-Cancer Agents Med Chem. 2009;9(5):481–499. doi: 10.2174/187152009788451833.
6. Reeder J, Vogel V. Breast cancer prevention. Cancer Treat Res. 2008;141:149–164. doi: 10.1007/978-0-387-73161-2_10.
7. Abdull R, Noor N. Cruciferous vegetables: Dietary phytochemicals for cancer prevention. Asian Pac J Cancer Prev. 2013;14(3):1565–1570. doi: 10.7314/apjcp.2013.14.3.1565.
8. Torre LA, Sauer AM, Chen MS, Kagawa-Singer M, Jemal A, Siegel RL. Cancer statistics for Asian Americans, native Hawaiians, and Pacific islanders, 2016: Converging incidence in males and females. CA Cancer J Clin. 2016;66(3):182–202. doi: 10.3322/caac.21335.
9. Aronson K, Miller A, Woolcott C, Sterns E, McCready D, Lickley L, et al. Breast adipose tissue concentrations of polychlorinated biphenyls and other organochlorines and breast cancer risk. Cancer Epidemiol Prev Biomarkers. 2000;9(1):55–63.
10. Tanis P, Nieweg O, Olmos R, Kroon B. Anatomy and physiology of lymphatic drainage of the breast from the perspective of sentinel node biopsy1. J Am Coll Surg. 2001;192(3):399–409. doi: 10.1016/s1072-7515(00)00776-6.
11. Thomsen S, Tatman D. Physiological and pathological factors of human breast disease that can influence optical diagnosis. Ann N Y Acad Sci. 1998;838(1):171–193. doi: 10.1111/j.1749-6632.1998.tb08197.x.
12. Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C, et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res. 1994;54(7):1812–1817.
13. Clark GJ, Der CJ. Aberrant function of the Ras signal transduction pathway in human breast cancer. Breast Cancer Res Treat. 1995;35(1):133–144. doi: 10.1007/BF00694753.
14. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989;244(4905):707–712. doi: 10.1126/science.2470152.
15. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, et al. 1989. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.
16. Ethier SP. Human breast cancer cell lines as models of growth regulation and disease progression. J Mammary Gland Biol Neoplasia 1996;1(1):111–121. doi: 10.1007/BF02096306.
17. Beatson GT. On the treatment of inoperable cases of carcinogen of the mamma: suggestions for a new method of treatment with illustrative cases. Trans Med Chir Soc Edinb. 1896;15:153–179.
18. Ascenzi P, Bocedi A, Marino M. Structure–function relationship of estrogen receptor alpha and beta: Impact on human health. Mol Aspects Med. 2006;27(4):299–402. doi: 10.1016/j.mam.2006.07.001.
19. Allred DC, Mohsin SK. Biological features of human premalignant breast disease. In: Diseases of the Breast (Harris JR, ed.) Philadelphia: Lippincott Williams & Wilkins; 2000. pp. 355–366.
20. Fisher B, Redmond C, Fisher ER, Caplan R. Relative worth of estrogen or progesterone receptor and pathologic characteristics of differentiation as indicators of prognosis in node negative breast cancer patients: Findings from National Surgical Adjuvant Breast and Bowel Project Protocol B-06. J Clin Oncol. 1998;6(7):1076–1087. doi: 10.1200/JCO.1988.6.7.1076.
21. Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: Occurrence and significance. J Mammary Gland Biol Neoplasia. 2000;5(3):271–281. doi: 10.1023/a:1009594727358.
22. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–127. doi: 10.1016/j.ccr.2004.06.022.
23. Pratt WB, Toft DO. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr Rev. 1997;18(3):306–360. doi: 10.1210/edrv.18.3.0303.
24. Metivier R, Penot G, Hubner MR, Reid G, Brand H, Kos M, et al. Estrogen receptor-alpha directs ordered: Cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell. 2003;115(6):751–763. doi: 10.1016/s0092-8674(03)00934-6.
25. Lonard DM, O’Malley BW. Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell. 2007;27(5):691–700. doi: 10.1016/j.molcel.2007.08.012.
26. O’Malley BW. Coregulators: From whence came these master genes. Mol Endocrinol. 2007;21(5):1009–1013. doi: 10.1210/me.2007-0012.
27. Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell. 1996;87(5):953–959. doi: 10.1016/s0092-8674(00)82001-2.
28. Yang XJ, Ogryzko VV, Nishikawa J, Howard BH, Nakatani Y. A p300/CBPassociated factor that competes with the adenoviral oncoprotein E1A. Nature. 1996;382(6589):319–324. doi: 10.1038/382319a0.
29. Levin ER, Pietras RJ. Estrogen receptors outside the nucleus in breast cancer. Breast Cancer Res Treat .2008;108(3):351–361. doi: 10.1007/s10549-007-9618-4.
30. Bjornstrom L, Sjoberg M. Estrogen receptor-dependent activation of AP-1 via non-genomic signalling. Nucl Recept. 2004;2(1):3. doi: 10.1186/1478-1336-2-3.
31. Marino M, Acconcia F, Bresciani F, Weisz A, Trentalance A. Distinct nongenomic signal transduction pathways controlled by 17beta-estradiol regulate DNA synthesis and cyclin D(1) gene transcription in HepG2 cells. Mol Biol Cell. 2002;13(10):3720–3729. doi: 10.1091/mbc.e02-03-0153.
32. Kang L, Zhang X, Xie Y, Tu Y, Wang D, Liu Z, et al. Involvement of estrogen receptor variant ER-alpha36: Not GPR30, in nongenomic estrogen signaling. Mol Endocrinol. 2010;24(4):709–721. doi: 10.1210/me.2009-0317.
33. Filardo EJ, Thomas P, Minireview. G protein-coupled estrogen receptor-1, gper-1: its mechanism of action and role in female reproductive cancer, renal and vascular physiology. Endocrinology. 2012;153(7):2953–2962. doi: 10.1210/en.2012-1061.
34. Filardo EJ, Quinn JA, Frackelton Jr AR, Bland KI. Estrogen action via the G protein-coupled receptor, GPR30: Stimulation of adenylyl cyclase and cAMPmediated attenuation of the epidermal growth factor receptor-to-MAPK signaling axis. Mol Endocrinol. 2002;16(1):70–84. doi: 10.1210/mend.16.1.0758.
35. Jordan VC. SERMs: Meeting the promise of multifunctional medicines. J Natl Cancer Inst. 2007;99(5):350–356. doi: 10.1093/jnci/djk062.
36. Lonard DM, Nawaz Z, Smith CL, O’Malley BW. The 26S proteasome is required for estrogen receptor-alpha and coactivator turnover and for efficient estrogen receptor-alpha transactivation. Mol Cell. 2000;5(6):939–948. doi: 10.1016/s1097-2765(00)80259-2.
37. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: An overview of the randomised trials. Lancet. 2005;365(9472):1687–717. doi: 10.1016/S0140-6736(05)66544-0.
38. Ali S, Coombes RC. Estrogen receptor alpha in human breast cancer: Occurrence and significance. J Mammary Gland Biol Neoplasia. 2000;5(3):271–281. doi: 10.1023/a:1009594727358.
39. Briera MJ, Chamblessa D, Gross RH, Suc I, DeMicheled A, et al. Association between self-report adherence measures and oestrogen suppression among breast cancer survivors on aromatase inhibitors. Eur J Cancer. 2015;51(14):1890–1896. doi: 10.1016/j.ejca.2015.06.113.
40. Nelson ER, Wardell SE, Jasper JS, Park S, Suchindran S, Howe MK, et al. 27-Hydroxycholesterol links hypercholesterolemia and breast cancer pathophysiology. Science. 2013;342(6162):1094–1098. doi: 10.1126/science.1241908.
41. Yuhanna IS, Cummins CL, Javitt NB, Korach KS, Shaul PW, Mangelsdorf DJ. 27-hydroxycholesterol is an endogenous selective estrogen SERM that inhibits the cardiovascular effects of estrogen. Nat Med. 2007;13(10):1185–1192. doi: 10.1038/nm1641.
42. Limer JL, Speirs V. Phyto-oestrogens and breast cancer chemoprevention. Breast Cancer Res. 2004;6(3):119–127. doi: 10.1186/bcr781.
43. Boyd NF, Mcguire V. Evidence of association between plasma high density-lipoprotein cholesterol and risk-factors for breast-cancer. J Natl Cancer Inst. 1990;82(6):460–468. doi: 10.1093/jnci/82.6.460.
44. Bianchini F, Kaaks R, Vainio H. Overweight, obesity, and cancer risk. Lancet Oncol. 2002;3(9):565–574. doi: 10.1016/S1470-2045(02)00849-5.
45. Kitahara CM, Berrington de Gonzalez A, Freedman ND, Huxley R, Mok Y, Jee SH, et al. Total cholesterol and cancer risk in a large prospective study in Korea. J Clin Oncol. 2011;29(12):1592–1598. doi: 10.1200/JCO.2010.31.5200.
46. DuSell CD, Umetani M, Shaul PW, Mangelsdorf DJ, McDonnell DP. 27-hydroxycholesterol is an endogenous selective estrogen receptor modulator. Mol Endocrinol. 2008;22(1):65–77. doi: 10.1210/me.2007-0383.
47. Brown AJ, Jessup W. Oxysterols and atherosclerosis. Atherosclerosis. 1999;142(1):1–28. doi: 10.1016/s0021-9150(98)00196-8.
48. Burkard I, von Eckardstein A, Waeber G, Vollenweider P, Rentsch KM. Lipoprotein distribution and biological variation of 24S- and 27-hydroxycholesterol in healthy volunteers. Atherosclerosis. 2007;194(1):71–78. doi: 10.1016/j.atherosclerosis.2006.09.026.
49. Wu Q, Ishikawa T, Sirianni R, Tang H, McDonald JG, Yuhanna IS, et al. 27-Hydroxycholesterol promotes cell-autonomous, ER-positive breast cancer growth. Cell Rep. 2013;5(3):637–645. doi: 10.1016/j.celrep.2013.10.006.
50. Baek AE, Yu Y-RA, He S, Wardell SE, Chang C-Y, Kwon S, et al. The cholesterol metabolite 27 hydroxycholesterol facilitates breast cancer metastasis through its actions on immune cells. Nat Commun. 2017;8(1):864. doi: 10.1038/s41467-017-00910-z.


Regular Issue Subscription Review Article
Volume 02
Issue 02
Received 23/11/2024
Accepted 27/11/2024
Published 24/12/2024


Login


My IP

PlumX Metrics