This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Vikas Pandey,
Mohinee Kumari,
- Student, Department of zoology, Shri Harish Chandra Post Graduate College, Maidagi Varanasi, Uttar Pradesh, India
- Student, Department of zoology, Shri Harish Chandra Post Graduate College, Maidagi Varanasi, Uttar Pradesh, India
Abstract
Fungi are simple and inexpensive to cultivate, like miniature factories. Their enzymes are more environmentally friendly and safer for all to use compared to the use of dangerous chemicals. This review delves into how scientists are employing these enzymes to clean up polluted soil, purify wastewater, and even convert waste into valuable products such as biofuels.For example, fungi are amazing at cleaning! They create enzymes, which act as little workers and break down a variety of unpleasant environmental materials. This document? It all comes down to those workhorses of fungal enzymes. We examine a variety of types, such as starch amylases, wood ligninases, and plant cellulases. These enzymes have the ability to decontaminate, like pesticides from land and dyes from water. The paper critically evaluates the potential of fungal enzymes in wastewater treatment, organic waste conversion into bio-based products, and environmental remediation. However, there are substantial differences in the efficacy of these enzymes, therefore optimizing them is a step toward enhancing their catalytic capacities. Enhancing fungal strains to produce more enzymes through genetic engineering or environmental parameter optimization could result in improved enzyme kinetics. Last but not least, more research is required to scale up and lower the cost of employing fungal enzymes so that they can be widely used to produce ecologically friendly remedies for environmental contamination. One of the main opportunities for advancing green technology for environmental remediation is to unleash the full potential of fungal enzymes.
Keywords: Fungi, Enzymatic, Environmental Guardians, fungal enzymes, bioremediation
[This article belongs to International Journal of Fungi ]
Vikas Pandey, Mohinee Kumari. Fungi as Environmental Guardians: Enzymatic Solutions to Pollution. International Journal of Fungi. 2025; 02(02):-.
Vikas Pandey, Mohinee Kumari. Fungi as Environmental Guardians: Enzymatic Solutions to Pollution. International Journal of Fungi. 2025; 02(02):-. Available from: https://journals.stmjournals.com/ijf/article=2025/view=226027
References
1.Møller K, Tidemand L, Winther J, Olsson L, Piškur J, Nielsen J. Production of a heterologous proteinase A by Saccharomyces kluyveri. Applied microbiology and biotechnology. 2001 Oct;57(1):216-9.
2. Weng XY, Sun JY. Kinetics of biodegradation of free gossypol by Candida tropicalis in solid-state fermentation. Biochemical Engineering Journal. 2006 Dec 1;32(3):226-32.
3. Chou YT, Koh YC, Nagabhushanam K, Ho CT, Pan MH. A natural degradant of curcumin, feruloylacetone inhibits cell proliferation via inducing cell cycle arrest and a mitochondrial apoptotic pathway in HCT116 colon cancer cells. Molecules. 2021 Aug 12;26(16):4884.
4. Guo LD, Chen XJ, Hu YH, Yu ZJ, Wang D, Liu JZ. Curcumin inhibits proliferation and induces apoptosis of human colorectal cancer cells by activating the mitochondria apoptotic pathway. Phytotherapy Research. 2013 Mar;27(3):422-30.
5. Viswanath B, Rajesh B, Janardhan A, Kumar AP, Narasimha G. Fungal laccases and their applications in bioremediation. Enzyme research. 2014;2014(1):163242.
6. Saratale RG, Saratale GD, Chang JS, Govindwar SP. Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan institute of Chemical Engineers. 2011 Jan 1;42(1):138- 57.
7. Khalid A, Arshad M, Crowley DE. Accelerated decolorization of structurally different azo dyes by newly isolated bacterial strains. Applied Microbiology and Biotechnology. 2008 Feb;78(2):361-9.
8. Chengalroyen MD, Dabbs ER. The microbial degradation of azo dyes: minireview. World Journal of Microbiology and Biotechnology. 2013 Mar;29(3):389-99.
9. Vaksmaa A, Guerrero-Cruz S, Ghosh P, Zeghal E, Hernando-Morales V, Niemann H. Role of fungi in bioremediation of emerging pollutants. Frontiers in Marine Science. 2023 Mar 6;10:1070905.
10. Baldrian P. Fungal laccases–occurrence and properties. FEMS microbiology reviews. 2006 Mar 1;30(2):215-42.
11. Singh Arora D, Kumar Sharma R. Ligninolytic fungal laccases and their biotechnological applications. Applied biochemistry and biotechnology. 2010 Mar;160(6):1760-88.
12. Pointing SB, Vrijmoed LL. Decolorization of azo and triphenylmethane dyes by Pycnoporus sanguineus producing laccase as the sole phenoloxidase. World Journal of Microbiology and Biotechnology. 2000 Apr;16(3):317-8.
13. Revankar MS, Lele SS. Enhanced production of laccase using a new isolate of white rot fungus WR-1. Process Biochemistry. 2006 Mar 1;41(3):581-8.
14. Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water research. 2002 Jun 1;36(11):2824-30.
15. Aliyev K, Humbatova S, Gadim-Oglu NH. How oil price changes affect inflation in an oil-exporting country: Evidence from Azerbaijan. Sustainability. 2023 Mar 28;15(7):5846.
16. Singh RL, Singh PK. Global environmental problems. InPrinciples and applications of environmental biotechnology for a sustainable future 2016 Oct 15 (pp. 13-41). Singapore: Springer Singapore.
17. Zhang X, Spanjers H, van Lier JB. Potentials and limitations of biomethane and phosphorus recovery from sludges of brackish/marine aquaculture recirculation systems: A review. Journal of environmental management. 2013 Dec 15;131:44-54.
18. Viegas C, Gouveia L, Gonçalves M. Evaluation of microalgae as bioremediation agent for poultry effluent and biostimulant for germination. Environmental Technology & Innovation. 2021 Nov 1;24:102048.
19. Singh R, Kumar V, Kumar P, Zafar A. Fungal enzymatic potential for the degradation of textile dyes: A review. Environ Sci Pollut Res. 2016;23(7):6136-50. doi:10.1007/s11356-015-5856-9
20. Levin L, Papinutti L, Forchiassin F. Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes. Bioresour Technol. 2004;94(2):169-76. doi:10.1016/j.biortech.2004.01.011
21. Murugesan AG, Sathishkumar M. Textile dye effluent decolorization using fungi and its enzymes: a review. J Environ Sci Eng. 2013;5(12):574-83.
22. Solis M, et al. Fungal degradation of azo dyes: mechanism, biochemistry and environmental factors. Process Biochem. 2012;47(12):2333-47. doi:10.1016/j.procbio.2012.08.014
23. Tyagi VK, et al. Bioaugmentation: A strategy to enhance the remediation of polycyclic aromatic hydrocarbons. Biodegradation. 2011;22(4):667-82. doi:10.1007/s10532-010-9456-1
24. Adedayo O, et al. Recent advances in fungal bioremediation of pharmaceutical wastewater: A critical review. Water Air Soil Pollut. 2023;234(8):520. doi:10.1007/s11270-023-06568-1
25. Kumar A, et al. Mycoremediation of petroleum hydrocarbons: A review of mechanisms, applications, and future prospects. Environ Technol Innov. 2023;32:103332. doi:10.1016/j.eti.2023.103332
26. Selvam K, et al. Fungal degradation of microplastics: A review of mechanisms, applications, and future perspectives. Environ Pollut. 2022;306:119484. doi:10.1016/j.envpol.2022.119484
27. Nandal U, Kuhad RC. Enzymatic saccharification of lignocellulosic agricultural residues using cellulases from an alkalophilic Bacillus strain. Bioresour Technol. 2011;102(21):10205-11. doi:10.1016/j.biortech.2011.07.054
28. Kumar S, et al. Role of fungal enzymes in waste management and resource recovery: A review. J Environ Manage. 2020;271:110985. doi:10.1016/j.jenvman.2020.110985
29. Husain Q. Potential applications of enzymes from microorganisms for textile industry waste management: A review. Crit Rev Biotechnol. 2010;30(3):201-21. doi:10.3109/07388551003614443
30. Singh S, et al. Mycoremediation: An eco-friendly approach for sustainable environmental management. Front Environ Sci. 2021;9:724479. doi:10.3389/fenvs.2021.724479
31. Meehnian N, et al. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi: A mini review. J Environ Health Sci Eng. 2017;15(1):10. doi:10.1186/s40201-017-0272-4
32. Akhtar N, et al. Bioremediation of pulp and paper mill effluent: A review. Rev Environ Sci Biotechnol. 2013;12(4):377-96. doi:10.1007/s11157-013-9319-7
33. Manan S, et al. Role of fungal enzymes in biofuel production: A review. BioEnergy Res. 2021;14(3):755- 73. doi:10.1007/s12155-020-10206-1
34. Sharma P, et al. Fungal enzymes for the treatment of industrial effluents. In: Bioremediation of Industrial Waste for Environmental Safety. Singapore: Springer; 2018. p.137-60. doi:10.1007/978-981-10-7147-7_7
35. Dhiman SS, et al. Application of fungal enzymes in paper and pulp industry. In: Biotechnological Applications of Fungi. Singapore: Springer; 2021. p.119-34. doi:10.1007/978-981-15-9520-1_7
36. Singh J, et al. Prospects of fungi in bioremediation of textile wastewater. In: Microbial Bioremediation and Biodegradation. Singapore: Springer; 2021. p.247-64. doi:10.1007/978-981-15-7395-7_13
37. Gogate PR, et al. Wastewater treatment technologies involving fungi: A review. Crit Rev Environ Sci Technol. 2016;46(21):1761-800. doi:10.1080/10643389.2016.1218688
38. Hasan F, et al. Enzymatic degradation of synthetic polymers: A review. Biotechnol Adv. 2012;30(5):1171- 92. doi:10.1016/j.biotechadv.2012.02.004
39. Shrivastava R, et al. Role of fungal enzymes in bioremediation of pesticides. In: Environmental Chemistry for a Sustainable World. Cham: Springer; 2021. p.477-97. doi:10.1007/978-3-030-69050-8_20
40. Ghadge SV, et al. Recent advances in fungal bioremediation of polycyclic aromatic hydrocarbons (PAHs). Rev Environ Sci Biotechnol. 2020;19(4):819-42. doi:10.1007/s11157-020-09549-9
41. Mishra S, et al. Fungal enzymes for environmental safety and sustainability. In: Biotechnological Applications of Fungi. Singapore: Springer; 2021. p.407-20. doi:10.1007/978-981-15-9520-1_22
42. Kumar V, et al. Fungal bioremediation of heavy metals: Mechanisms and applications. Environ Sci Pollut Res. 2019;26(31):31807-22. doi:10.1007/s11356-019-06387-3
43. Yadav AN, et al. Fungal enzymes: Promising tools for environmental bioremediation. J Fungi. 2022;8(9):955. doi:10.3390/jof8090955
44. Anees R, et al. Fungal bioremediation: A review of the myriad roles fungi play in the remediation of polluted environments. Environ Sci Pollut Res. 2020;27:15897–917. doi:10.1007/s11356-020-08193-6
45. Tran NH, et al. Application of fungal laccases for the removal of pharmaceuticals and personal care products from wastewater: A critical review. Bioresour Technol. 2010;101(6):1707-27. doi:10.1016/j.biortech.2009.10.030
46. Bilal M, Asgher M, Iqbal HMN. Fungal enzymes for bioremediation. In: Fungal Biotechnology and Bioengineering. Amsterdam: Elsevier; 2020. doi:10.1016/B978-0-12-819903-4.00005-1
47. Rani L, Thawani V, Kumar S. Recent advances in enzymatic transformation and detoxification of pesticides: A critical review. Chemosphere. 2021;276:130169. doi:10.1016/j.chemosphere.2021.130169
48. Aggelis G, et al. White-rot fungi and their enzymes for the treatment of olive mill wastewater: A critical review. Appl Microbiol Biotechnol. 2003;63:34-42. doi:10.1007/s00253-003-1419-x
49. Bugg TDH, et al. Enzymatic degradation of lignin. Curr Opin Chem Biol. 2011;15(1):21-7. doi:10.1016/j.cbpa.2010.10.009
50. Elisashvili V. Lignocellulose-degrading enzymes of basidiomycetes: Production, properties and biotechnological applications. Enzyme Microb Technol. 2012;51(2):1-17. doi:10.1016/j.enzmictec.2012.05.008

International Journal of Fungi
| Volume | 02 |
| Issue | 02 |
| Received | 25/07/2025 |
| Accepted | 30/07/2025 |
| Published | 10/09/2025 |
| Publication Time | 47 Days |
Login
PlumX Metrics
