Aspergillus Oryzae: Multifunctional Powerhouse Revolutionizing Food Industries and Gut Health

Year : 2025 | Volume : 02 | Issue : 01 | Page : 1-17
    By

    Saksham Gupta,

  • Kanchi Khandelwal,

  1. Student, Department of Biochemistry, Bundelkhand University Jhansi, Uttar Pradesh, India
  2. Student, Department of Biochemistry, Bundelkhand University Jhansi, Uttar Pradesh, India

Abstract

Aspergillus oryzae, commonly known as “Koji mold,” is a filamentous fungus extensively utilized in various food industries due to its robust enzymatic activity and generally recognized as safe (GRAS) status. This review explores its diverse applications, focusing on its role in fermented food production, enzyme generation, and contributions to gut health. In the production of fermented foods, such as soy sauce, miso, and sake, A. oryzae serves as a crucial microorganism, breaking down complex carbohydrates and proteins into simple sugars and amino acids, and enhancing flavor and nutritional profiles. Its ability to produce industrial enzymes, including amylases, proteases, and lipases, has made it indispensable in brewing, baking, and the dairy industry. Additionally, A. oryzae-derived enzymes are widely used in developing food thickeners and flavor enhancers, underscoring their biotechnological significance. Emerging studies highlight the potential of A. oryzae in promoting gut health. Fermented foods made with Aspergillus oryzae can support better digestion, balance the gut microbiome, and boost the absorption of nutrients. Its enzymes aid in breaking down complex dietary components, reducing gut inflammation, and supporting overall gastrointestinal well-being. This review consolidates recent advancements in the food industry and explores the symbiotic relationship between A. oryzae and gut health, emphasizing its importance in functional food development.

 

Keywords: Aspergillus oryzae, fermented food, gut health, symbiosis, Microbes

[This article belongs to International Journal of Fungi ]

aWQ6MTk4NDAwfGZpbGVuYW1lOjEzMmQ5OTNlLTEtcG5nLndlYnB8c2l6ZTp0aHVtYm5haWw=
How to cite this article:
Saksham Gupta, Kanchi Khandelwal. Aspergillus Oryzae: Multifunctional Powerhouse Revolutionizing Food Industries and Gut Health. International Journal of Fungi. 2025; 02(01):1-17.
How to cite this URL:
Saksham Gupta, Kanchi Khandelwal. Aspergillus Oryzae: Multifunctional Powerhouse Revolutionizing Food Industries and Gut Health. International Journal of Fungi. 2025; 02(01):1-17. Available from: https://journals.stmjournals.com/ijf/article=2025/view=191974


Browse Figures

References

  1. Watarai N, Yamamoto N, Sawada K, Yamada T. Evolution of Aspergillus oryzae before and after domestication inferred by large-scale comparative genomic analysis. DNA Res. 2019;26(6):465–472.
  2. Barbesgaard P, Heldt-Hansen HP, Diderichsen B. On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol. 1992;36:569–572.
  3. Gomi K. Regulatory mechanisms for amylolytic gene expression in the koji mold Aspergillus oryzae. Biosci Biotechnol Biochem. 2019;83(8):1385–1401.
  4. Christensen T, Woeldike H, Boel E, Mortensen SB, Hjortshoej K, Thim L, et al. High level expression of recombinant genes in Aspergillus oryzae. Bio/technology. 1988;6(12):1419–1422.
  5. Taylor MJ, Richardson T. Applications of microbial enzymes in food systems and in biotechnology. Adv Appl Microbiol. 1979;25:7–35.
  6. Abe K, Gomi K, Hasegawa F, Machida M. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia. 2006;162:143–153.
  7. Joint FAO/WHO Expert Committee on Food Additives. Meeting, World Health Organization. Safety evaluation of certain food additives and contaminants. World Health Organization; 2008. Vol. 68.
  8. Barbesgaard P, Heldt-Hansen HP, Diderichsen B. On the safety of Aspergillus oryzae: a review. Appl Microbiol Biotechnol. 1992;36:569–572.
  9. Matsushima K, Chang PK, Yu J, Abe K, Bhatnagar D, Cleveland T. Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesis. Appl Microbiol Biotechnol. 2001;55:585–589.
  10. Matsushima K, Yashiro K, Hanya Y, Abe K, Yabe K, Hamasaki T. Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae). Appl Microbiol Biotechnol. 2001;55:771–776.
  11. Murakami H. Classification of the koji mold. J Gen Appl Microbiol. 1971;17(4):281–309.
  12. Gomi K, Tanaka A, Iimura Y, Takahashi K. Rapid differentiation of four related species of koji molds by agarose gel electrophoresis of genomic DNA digested with SmaI restriction enzyme. J Gen Appl Microbiol. 1989;35(3):225–232.
  13. Lee CZ, Liou GY, Yuan GF. Comparison of the aflR gene sequences of strains in Aspergillus section Flavi. Microbiology. 2006;152(1):161–170.
  14. Chang PK, Bhatnagar D, Cleveland TE, Bennett JW. Sequence variability in homologs of the aflatoxin pathway gene aflR distinguishes species in Aspergillus section Flavi. Appl Environ Microbiol. 1995;61(1):40–43.
  15. Zhang Y, Wilkinson H, Keller N, Tsitsigiannis D. Secondary metabolite gene clusters. In: Handbook of industrial mycology. CRC Press; 2004. pp. 374–405.
  16. Fukushima D. Industrialization of fermented soy sauce production centering around Japanese shoyu. Food Sci Technol-NY-Marcel Dekker. 2004;1–88.
  17. Abe K, Gomi K, Hasegawa F, Machida M. Impact of Aspergillus oryzae genomics on industrial production of metabolites. Mycopathologia. 2006;162:143–153.
  18. Yokotsuka T, Sasaki M. Fermented protein foods in the Orient: shoyu and miso in Japan. Microbiol Ferment Foods. 1998;351–415.
  19. Houston DF, editor. Rice: Chemistry and technology. 1972.
  20. Yoshizawa K, Ishikawa T. Industrialization of sake manufacture. Food Sci Technol-NY-Marcel Dekker. 2004;149–188.
  21. Gurung N, Ray S, Bose S, Rai V. A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int. 2013;2013:329121.
  22. Raimbault M. General and microbiological aspects of solid substrate fermentation. Electron J Biotechnol. 1998;1(3):26–27.
  23. Raveendran S, Parameswaran B, Ummalyma SB, Abraham A, Mathew AK, Madhavan A, et al. Applications of microbial enzymes in food industry. Food Technol Biotechnol. 2018;56(1):16.
  24. Subramaniyam R, Vimala R. Solid state and submerged fermentation for the production of bioactive substances: a comparative study. Int J Sci Nat. 2012;3(3):480–486.
  25. Godfrey T, Reichelt J. Industrial enzymology. Nature Press New York; 1983.
  26. Liang Y, Pan L, Lin Y. Analysis of extracellular proteins of Aspergillus oryzae grown on soy sauce koji. Biosci Biotechnol Biochem. 2009;73(1):192–195.
  27. Chancharoonpong C, Hsieh PC, Sheu SC. Enzyme production and growth of Aspergillus oryzae S. on soybean koji fermentation. Apcbee Procedia. 2012;2:57–61.
  28. Ramakrishna V, Rajasekhar S, Reddy LS. Identification and purification of metalloprotease from dry grass pea (Lathyrus sativus L.) seeds. Appl Biochem Biotechnol. 2010;160:63–71.
  29. Sampaio e Silva TA, Knob A, Tremacoldi CR, Brochetto-Braga MR, Carmona EC. Purification and some properties of an extracellular acid protease from Aspergillus clavatus. World J Microbiol Biotechnol. 2011;27:2491–2497.
  30. de Castro RJS, Sato HH. Protease from Aspergillus oryzae: biochemical characterization and application as a potential biocatalyst for production of protein hydrolysates with antioxidant activities. J Food Process. 2014;2014(1):372352.
  31. Eugster PJ, Salamin K, Grouzmann E, Monod M. Production and characterization of two major Aspergillus oryzae secreted prolyl endopeptidases able to efficiently digest proline-rich peptides of gliadin. Microbiology. 2015;161(12):2277–2288.
  32. Ramachandran S, Patel AK, Nampoothiri KM, Chandran S, Szakacs G, Soccol CR, Pandey A. Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz Arch Biol Technol. 2004;47:309–317.
  33. Fadel M, AbdEl-Halim S, Sharada H, Yehia A, Ammar M. Production of glucoamylase, α-amylase and cellulase by Aspergillus oryzae F-923 cultivated on wheat bran under solid-state fermentation. J Adv Biol Biotechnol. 2020;23(4):8–22.
  34. James JA, Lee BH. Glucoamylases: microbial sources, industrial applications and molecular biology—a review. J Food Biochem. 1997;21(6):1–52.
  35. Priji P, Sajith S, Faisal PA, Benjamin S. Microbial lipases− properties and applications. J Microbiol Biotechnol Food Sci. 2016;6(2):799.
  36. Ahmed A, Badar R, Khalique N. Screening and optimization of submerged fermentation of lipolytic Aspergillus oryzae. BioResources. 2019;14(4).
  37. Bhat M. Cellulases and related enzymes in biotechnology. Biotechnol Adv. 2000;18(5):355–383.
  38. Hoa BT, Hung PV. Optimization of nutritional composition and fermentation conditions for cellulase and pectinase production by Aspergillus oryzae using response surface methodology. Int Food Res J. 2013;20(6):3269.
  39. Nizamuddin S, Sridevi A, Narasimha G. Production of β-galactosidase by Aspergillus oryzae in solid-state fermentation. Afr J Biotechnol. 2008;7(8):1096.
  40. Olempska-Beer Z. Asparaginase from Aspergillus oryzae encoded by the asparaginase gene from A. oryzae. Chem Tech Ass (CTA). 2007;1–7.
  41. Yepuru SK. Production of alkaline protease from Aspergillus oryzae isolated from seashore of Bay of Bengal. J Appl Nat Sci. 2018;10(4):1210–1215.
  42. Zambare V. Solid state fermentation of Aspergillus oryzae for glucoamylase production on agro residues. Int J Life Sci. 2010;4:16–25.
  43. Lakshmi MVVC, Jyothi P. Production and optimization of glucoamylase from Aspergillus oryzae NCIM 1212 using wheat bran, varying chemical parameters under solid-state fermentation. Int J Curr Microbiol App Sci. 2014;3(5):70–76.
  44. Parbat R, Singhal B. Production of glucoamylase by Aspergillus oryzae under solid-state fermentation using agro-industrial products. Int J Microbiol Res. 2011;2:204–207.
  45. Sher H, Faheem M, Ghani A, Mehmood R, Rehman H, Bokhari SA. Optimization of cellulase enzyme production from Aspergillus oryzae for industrial applications. World J Biol Biotechnol. 2017;2(2):155–158.
  46. Dias FFG, Ruiz ALT, Della Torre A, Sato HH. Purification, characterization and antiproliferative activity of L-asparaginase from Aspergillus oryzae CCT 3940 with no glutaminase activity. Asian Pac J Trop Biomed. 2016;6(9):785–794.
  47. Meneghel L, Reis GP, Reginatto C, Malvessi E, da Silveira MM. Assessment of pectinase production by Aspergillus oryzae in growth-limiting liquid medium under limited and non-limited oxygen supply. Process Biochem. 2014;49(11):1800–1807.
  48. Ketipally R, Ram MR. Optimization of pectinase production by Aspergillus oryzae RR 103. Curr Agric Res J. 2018;6(1):37.
  49. Hamer RJ. Enzymes in the baking industry. In: Enzymes in food processing. Springer US; 1995. pp. 190–222.
  50. Kulp K. Enzymes as dough improvers. In: Advances in baking technology. Springer US; 1993. pp. 152–178.
  51. Linko Y, Linko P. Enzymes in baking. Chem Phys Baking. 1986;105–116.
  52. Poutanen K. Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol. 1997;8(9):300–306.
  53. Maat J, Roza M, Verbakel J, Stam H, Santos da Silva MJ, Bosse M, et al. Xylanases and their applications in bakery. In: Xylans and xylanases. Elsevier, Amsterdam; 1992. pp. 349–360.
  54. Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes in the textile industry. Trichoderma & Gliocladium. 1998;2:311–325.
  55. Pajunen E. Optimal use of β-glucanases in wort production. In: EBC-Symposium on wort production, Monograph XI. Maffliers, France; 1986. pp. 137–148.
  56. Oksanen J, Ahvenainen J, Home S. Microbial cellulase for improving filterability of wort and beer. J Inst Brew. 1985;91(3):130.
  57. Canales AM, Garza R, Sierra JA, Arnold R. The application of a beta-glucanase with additional side activities in brewing. Tech Q Master Brewers Assoc Am. 1988.
  58. Uhlig H, editor. Industrial enzymes and their applications. John Wiley & Sons; 1998.
  59. Grassin C, Fauquembergue P, Godfrey T, West S. Industrial enzymology. 1996.
  60. Caldini C, Bonomi F, Pifferi PG, Lanzarini G, Galante YM. Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine. Enzyme Microb Technol. 1994;16(4):286–291.
  61. Gunata YZ, Bayonove CL, Cordonnier RE, Arnaud A, Galzy P. Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii β‐glucosidases. J Sci Food Agric. 1990;50(4):499–506.
  62. Dubourdieu D, Ribereau-Gayon P, Fournet B. Structure of the extracellular β-D-glucan from Botrytis cinerea. Carbohydr Res. 1981;93(2):294–299.
  63. Villettaz JC, Steiner D, Trogus H. The use of a beta glucanase as an enzyme in wine clarification and filtration. Am J Enol Vitic. 1984;35(4):253–256.
  64. Harbord R, Simpson C, Wegstein J. Winery scale evaluation of macerating enzymes in grape processing. Wine Ind J. 1990;5:134–137.
  65. Vining LC. Functions of secondary metabolites. Annu Rev Microbiol. 1990;44(1):395–427.
  66. Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK. Secondary metabolites of plants and their role: Overview. Curr Trends Biotechnol Pharm. 2015;9(3):293–304.
  67. Bennett RN, Wallsgrove RM. Secondary metabolites in plant defence mechanisms. New Phytol. 1994;127(4):617–633.
  68. Bentley R. From miso, sake and shoyu to cosmetics: a century of science for kojic acid. Nat Prod Rep. 2006;23(6):1046–1062.
  69. Morton HE, Kocholaty W, Junowicz-Kocholaty R, Kelner A. Toxicity and antibiotic activity of kojic acid produced by Aspergillus luteo-virescens. J Bacteriol. 1945;50(5):579–584.
  70. Rodrigues JC, Lima da Silva W, Ribeiro da Silva D, Maia CR, Santos Goiabeira CV, Figueiredo Chagas HD, et al. Antimicrobial activity of aspergillus sp. from the Amazon biome: isolation of Kojic acid. Int J Microbiol. 2022;2022(1):4010018.
  71. Wang R, Hu X, Agyekumwaa AK, Li X, Xiao X, Yu Y. Synergistic effect of kojic acid and tea polyphenols on bacterial inhibition and quality maintenance of refrigerated sea bass (Lateolabrax japonicus) fillets. Lwt. 2021;137:110452.
  72. Ermis N, Zare N, Darabi R, Alizadeh M, Karimi F, Singh J, et al. Recent advantage in electrochemical monitoring of gallic acid and kojic acid: a new perspective in food science. J Food Meas Charact. 2023;17(4):3644–3653.
  73. Yi BH, Kim DH. Antioxidant activity of maltol, kojic acid, levulinic acid, furfural, 5-hydroxymethyl furfural, and pyrazine. Korean J Food Sci Technol. 1982;14(3):265–70.
  74. Saruno R, Kato F, Ikeno T. Kojic acid, a tyrosinase inhibitor from Aspergillus albus. Agric Biol Chem. 1979;43(6):1337–1338.
  75. Phasha V, Senabe J, Ndzotoyi P, Okole B, Fouche G, Chuturgoon A. Review on the use of kojic acid—A skin-lightening ingredient. Cosmetics. 2022;9(3):64.
  76. Monteiro RC, Kishore BN, Bhat RM, Sukumar D, Martis J, Ganesh HK. A comparative study of the efficacy of 4% hydroquinone vs 0.75% kojic acid cream in the treatment of facial melasma. Indian J Dermatol. 2013;58(2):157.
  77. Marui J, Yamane N, Ohashi-Kunihiro S, Ando T, Terabayashi Y, Sano M, et al. Kojic acid biosynthesis in Aspergillus oryzae is regulated by a Zn (II) 2Cys6 transcriptional activator and induced by kojic acid at the transcriptional level. J Biosci Bioeng. 2011;112(1):40–43.
  78. Terabayashi Y, Sano M, Yamane N, Marui J, Tamano K, Sagara J, et al. Identification and characterization of genes responsible for biosynthesis of kojic acid, an industrially important compound from Aspergillus oryzae. Fungal Genet Biol. 2010;47(12):953–961.
  79. Chib S, Jamwal VL, Kumar V, Gandhi SG, Saran S. Fungal production of kojic acid and its industrial applications. Appl Microbiol Biotechnol. 2023;107(7):2111–2130.
  80. Werpy T, Petersen G. Top value-added chemicals from biomass: volume I—results of screening for potential candidates from sugars and synthesis gas (No. DOE/GO-102004-1992). National Renewable Energy Lab (NREL), Golden, CO (United States); 2004.
  81. Shigeo A, Akira F, Ichiro TK. U.S. Patent No. 3, 063, 910. Washington, DC: U.S. Patent and Trademark Office; 1962.
  82. Brown SH, Bashkirova L, Berka R, Chandler T, Doty T, McCall K, et al. Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl Microbiol Biotechnol. 2013;97:8903–8912.
  83. Geyer M, Onyancha FM, Nicol W, Brink HG. Malic acid production by Aspergillus oryzae: the role of CaCO3.
  84. Knuf C, Nookaew I, Brown SH, McCulloch M, Berry A, Nielsen J. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions. Appl Environ Microbiol. 2013;79(19):6050–6058.
  85. Kövilein A, Umpfenbach J, Ochsenreither K. Acetate as substrate for L-malic acid production with Aspergillus oryzae DSM 1863. Biotechnol Biofuels. 2021;14:1–15.
  86. Aldrich D, Vink W, Deptula RW, Muskus DJ, Fronczkowski PR, Chrusch M. U.S. Patent No. 4, 154, 867. Washington, DC: U.S. Patent and Trademark Office; 1979.
  87. Zhang Z, Wang B, Zhou P, Guo D, Kang R, Zhang B. A novel approach of chemical mechanical polishing using environment-friendly slurry for mercury cadmium telluride semiconductors. Sci Rep. 2016;6(1):22466.
  88. Stallcup OT. U.S. Patent No. 4, 161, 539. Washington, DC: U.S. Patent and Trademark Office; 1979.
  89. Son SY, Lee S, Singh D, Lee NR, Lee DY, Lee CH. Comprehensive secondary metabolite profiling toward delineating the solid and submerged-state fermentation of Aspergillus oryzae KCCM 12698. Front Microbiol. 2018;9:1076.
  90. Liu L, Bao L, Wang L, Ma K, Han J, Yang Y, et al. Asperorydines A–M: prenylated tryptophan-derived alkaloids with neurotrophic effects from Aspergillus oryzae. J Org Chem. 2018;83(2):812–822.
  91. Horie Y, Goto A, Imamura R, Itoh M, Ikegawa S, Ogawa S, et al. Quantification of ergothioneine in Aspergillus oryzae-fermented rice bran by a newly-developed LC/ESI-MS/MS method. LWT. 2020;118:108812.
  92. Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta Mol Basis Dis. 2012;1822(5):784–793.
  93. Servillo L, D’Onofrio N, Balestrieri ML. Ergothioneine antioxidant function: from chemistry to cardiovascular therapeutic potential. J Cardiovasc Pharmacol. 2017;69(4):183–191.
  94. Pfefferle W, Anke H, Bross M, Steffan B, Vianden R, Steglich W. Asperfuran, a novel antifungal metabolite from Aspergillus oryzae. J Antibiot (Tokyo). 1990;43(6):648–654.
  95. Sakata K, Kuwatsuka T, Sakurai A, Takahashi N, Tamura G. Isolation of aspirochlorine (= antibiotic A30641) as a true antimicrobial constituent of the antibiotic, oryzachlorin, from Aspergillus oryzae. Agric Biol Chem. 1983;47(11):2673–2674.
  96. Monti F, Ripamonti F, Hawser SP, Islam K. Aspirochlorine: A highly selective and potent inhibitor of fungal protein synthesis. J Antibiot (Tokyo). 1999;52(3):311–318.
  97. Akasaka N, Kato S, Kato S, Hidese R, Wagu Y, Sakoda H, et al. Agmatine production by Aspergillus oryzae is elevated by low pH during solid-state cultivation. Appl Environ Microbiol. 2018;84(15):e00722-e00718.
  98. Courteix C, Privat AM, Pélissier T, Hernandez A, Eschalier A, Fialip J. Agmatine induces antihyperalgesic effects in diabetic rats and a superadditive interaction with R (–)-3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid, a N-methyl-D-aspartate-receptor antagonist. J Pharmacol Exp Ther. 2007;322(3):1237–1245.
  99. Lavinsky D, Arteni NS, Netto CA. Agmatine induces anxiolysis in the elevated plus maze task in adult rats. Behav Brain Res. 2003;141(1):19–24.
  100. Zomkowski AD, Hammes L, Lin J, Calixto JB, Santos ARS, Rodrigues ALS. Agmatine produces antidepressant-like effects in two models of depression in mice. Neuroreport. 2002;13(4):387–391.
  101. Zagórska J, Czernicka-Bos L, Kukula-Koch W, Szalak R, Koch W. Impact of thermal processing on the composition of secondary metabolites of ginger rhizome—A review. Foods. 2022;11:3484.
  102. Managa MG, Sultanbawa Y, Sivakumar D. Effects of different drying methods on untargeted phenolic metabolites, and antioxidant activity in Chinese cabbage (Brassica rapa L. subsp. chinensis) and nightshade (Solanum retroflexum Dun.). Molecules. 2020;25(6):1326.
  103. Lu H, Peng S, Xu N, Shang X, Liu J, Xu Z, et al. Exploring the effects of different drying methods on related differential metabolites of Pleurotus citrinopileatus Singer based on untargeted metabolomics. Plants. 2024;13(12):1594.
  104. Valadez-Carmona L, Plazola-Jacinto CP, Hernández-Ortega M, Hernández-Navarro MD, Villarreal F, Necoechea-Mondragón H, et al. Effects of microwaves, hot air, and freeze-drying on the phenolic compounds, antioxidant capacity, enzyme activity, and microstructure of cacao pod husks (Theobroma cacao L.). Innov Food Sci Emerg Technol. 2017;41:378–386.
  105. Wang W, Jung J, McGorrin RJ, Traber MG, Leonard SW, Cherian G, et al. Investigation of drying conditions on bioactive compounds, lipid oxidation, and enzyme activity of Oregon hazelnuts (Corylus avellana L.). Lwt. 2018;90:526–534.
  106. Kong L, Yu L, Feng T, Yin X, Liu T, Dong L. Physicochemical characterization of the polysaccharide from Bletilla striata: Effect of drying method. Carbohydr Polym. 2015;125:1–8.
  107. Li W, Wu DT, Li F, Gan RY, Hu YC, Zou L. Structural and biological properties of water soluble polysaccharides from lotus leaves: Effects of drying techniques. Molecules. 2021;26(15):4395.
  108. European Food Safety Authority (EFSA). Opinion of the Panel on additives and products or substances used in animal feed (FEEDAP) on the safety and efficacy of the product “Amaferm” as a feed additive for dairy cows and cattle for fattening in accordance with Regulation (EC) No 1831/2003. EFSA J. 2006;4(3):337.
  109. Konishi H, Isozaki S, Kashima S, Moriichi K, Ichikawa S, Yamamoto K, et al. Probiotic Aspergillus oryzae produces anti-tumor mediator and exerts anti-tumor effects in pancreatic cancer through the p38 MAPK signaling pathway. Sci Rep. 2021;11(1):11070.
  110. Lee K, Lee SK, Lee BD. Aspergillus oryzae as probiotic in poultry—A review. Int J Poult Sci. 2006;5(1):1–3.
  111. Iwashita MKP, Nakandakare IB, Terhune JS, Wood T, Ranzani-Paiva MJT. Dietary supplementation with Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus oryzae enhance immunity and disease resistance against Aeromonas hydrophila and Streptococcus iniae infection in juvenile tilapia Oreochromis niloticus. Fish Shellfish Immunol. 2015;43(1):60–66.
  112. Dawood MA, Eweedah NM, Moustafa EM, Farahat EM. Probiotic effects of Aspergillus oryzae on the oxidative status, heat shock protein, and immune-related gene expression of Nile tilapia (Oreochromis niloticus) under hypoxia challenge. Aquaculture. 2020;520:734669.
  113. Hamajima H, Matsunaga H, Fujikawa A, Sato T, Mitsutake S, Yanagita T, et al. Japanese traditional dietary fungus koji Aspergillus oryzae functions as a prebiotic for Blautia coccoides through glycosylceramide: Japanese dietary fungus koji is a new prebiotic. SpringerPlus. 2016;5:1–10.
  114. Kim SY, Jeong HS, Ahn SW, Shin KS. Prebiotic effects of structurally identified galacto-oligosaccharides produced by β-galactosidase from Aspergillus oryzae. Food Sci Biotechnol. 2014;23:823–830.
  115. Podversich F, Tarnonsky F, Bollatti JM, Silva GM, Schulmeister TM, Martinez JJ, et al. Effects of Aspergillus oryzae prebiotic on animal performance, nutrients digestibility, and feeding behavior of backgrounding beef heifers fed with either a sorghum silage-or a byproducts-based diet. J Anim Sci. 2023;101:skac312.
  116. Nomura R, Tsuzuki S, Kojima T, Nagasawa M, Sato Y, Uefune M, et al. Administration of Aspergillus oryzae suppresses DSS-induced colitis. Food Chem Mol Sci. 2022;4:100063.
  117. Ríus AG, Kaufman JD, Li MM, Hanigan MD, Ipharraguerre IR. Physiological responses of Holstein calves to heat stress and dietary supplementation with a postbiotic from Aspergillus oryzae. Sci Rep. 2022;12(1):1587.
  118. Hymes-Fecht UC, Casper DP. Adaptation and withdrawal of feeding dried Aspergillus oryzae fermentation product to dairy cattle and goats on in vitro NDF digestibility of selected forage sources. Transl Anim Sci. 2021;5(2):txab051.
  119. Gomez-Alarcon RA, Dudas C, Huber JT. Influence of cultures of Aspergillus oryzae on rumen and total tract digestibility of dietary components. J Dairy Sci. 1990;73(3):703–710.
  120. Ozma MA, Abbasi A, Akrami S, Lahouty M, Shahbazi N, Ganbarov K, et al. Postbiotics as the key mediators of the gut microbiota-host interactions. Le infezioni in medicina. 2022;30(2):180.
  121. Rad AH, Aghebati-Maleki L, Kafil HS, Abbasi A. Molecular mechanisms of postbiotics in colorectal cancer prevention and treatment. Crit Rev Food Sci Nutr. 2021;61(11):1787–1803.
  122. Salazar N, Gueimonde Fernández MC, Hernández-Barranco AM, Ruas-Madiedo P, González de los Reyes-Gavilán C. Bifidobacterium exopolysaccharides fermented by human microbiota.
  123. Huang F, Teng K, Liu Y, Cao Y, Wang T, Ma C, et al. Bacteriocins: potential for human health. Oxid Med Cell Longev. 2021;2021:5518825.
  124. Dittoe DK, Ricke SC, Kiess AS. Organic acids and potential for modifying the avian gastrointestinal tract and reducing pathogens and disease. Front Vet Sci. 2018;5:216.
  125. Lam KL, Cheung PCK. Non-digestible long chain beta-glucans as novel prebiotics. Bioact Carbohydr Diet Fibre. 2013;2(1):45–64.
  126. Russo P, López P, Capozzi V, De Palencia PF, Dueñas MT, Spano G, Fiocco D. Beta-glucans improve growth, viability, and colonization of probiotic microorganisms. Int J Mol Sci. 2012;13(5):6026–6039.
  127. Zartl B, Silberbauer K, Loeppert R, Viernstein H, Praznik W, Mueller M. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics. Food Funct. 2018;9(3):1638–1646.
  128. Wang H, Lai C, Tao Y, Zhou M, Tang R, Yong Q. Evaluation of the enzymatic production and prebiotic activity of galactomannan oligosaccharides derived from Gleditsia microphylla. Fermentation. 2023;9(7):632.
  129. Liu L, Wang Y, Kong M, Li X. Prebiotic-like effects of water soluble chitosan on the intestinal microflora in mice. Int J Food Eng. 2018;14(7–8):20180089.
  130. Guan Z, Feng Q. Chitosan and chitooligosaccharide: The promising non-plant-derived prebiotics with multiple biological activities. Int J Mol Sci. 2022;23(12):6761.
  131. Sözener ZC, Cevhertas L, Nadeau K, Akdis M, Akdis CA. Environmental factors in epithelial barrier dysfunction. J Allergy Clin Immunol. 2020;145(6):1517–1528.
  132. Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, et al. A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front Microbiol. 2019;10:477.
  133. Schiavi E, Gleinser M, Molloy E, Groeger D, Frei R, Ferstl R, et al. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses. Appl Environ Microbiol. 2016;82(24):7185–7196.
  134. Engevik MA, Luk B, Chang-Graham AL, Hall A, Herrmann B, Ruan W, et al. Bifidobacterium dentium fortifies the intestinal mucus layer via autophagy and calcium signaling pathways. MBio. 2019;10(3):1121–1128.
  135. Feng Y, Wang Y, Wang P, Huang Y, Wang F. Short-chain fatty acids manifest stimulative and protective effects on intestinal barrier function through the inhibition of NLRP3 inflammasome and autophagy. Cell Physiol Biochem. 2018;49(1):190–205.
  136. Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM. Postbiotic L. plantarum RG14 improves ruminal epithelium growth, immune status, and upregulates the intestinal barrier function in post-weaning lambs. Sci Rep. 2019;9(1):9938.
  137. Martorell P, Alvarez B, Llopis S, Navarro V, Ortiz P, Gonzalez N, et al. Heat-treated Bifidobacterium longum CECT-7347: a whole-cell postbiotic with antioxidant, anti-inflammatory, and gut-barrier protection properties. Antioxidants. 2021;10(4):536.
  138. Li Q, Gabler NK, Loving CL, Gould SA, Patience JF. A dietary carbohydrase blend improved intestinal barrier function and growth rate in weaned pigs fed higher fiber diets. J Anim Sci. 2018;96(12):5233–5243.
  139. He X, Yu B, He J, Huang Z, Mao X, Zheng P, et al. Effects of xylanase on growth performance, nutrients digestibility and intestinal health in weaned piglets. Livest Sci. 2020;233:103940.
  140. Liu D, Guo S, Guo Y. Xylanase supplementation to a wheat-based diet alleviated the intestinal mucosal barrier impairment of broiler chickens challenged by Clostridium perfringens. Avian Pathol. 2012;41(3):291–298.
  141. Petry AL, Huntley NF, Bedford MR, Patience JF. Xylanase increased the energetic contribution of fiber and improved the oxidative status, gut barrier integrity, and growth performance of growing pigs fed insoluble corn-based fiber. J Anim Sci. 2020;98(7):skaa233.
  142. Lu H, Shin S, Kuehn I, Bedford M, Rodehutscord M, Cowieson AJ. Influence of enzyme supplementation and feeding regimes on gut barrier integrity and immune response in poultry. J Anim Sci. 2018;96(6):2387–2397.
  143. Glávits R, Tóth L, Gábor G, Szászi J, Szabó N, Hódosi T, et al. Interaction of dietary supplementation of a fungal enzyme mixture and organic acids with intestinal barrier function in weaning pigs. Livest Sci. 2020;232:103954.
  144. Mózes F, Marton S, Szentirmai I, Sárközi S, Glávits R. Effects of yeast cell wall derivatives on the barrier function of the intestine of weaning piglets. Vet Sci. 2023;10(6):158.
  145. Fursova NK, Kushnarenko SV, Tishchenko VV, Ryabov AF. The effect of biotechnologically produced Aspergillus oryzae enzymes on the composition of the bacterial community and the function of the intestinal microbiome of poultry. Biol Microorganisms. 2021;40(4):71–81.
  146. Shao Y, Li W, Wu Y, Li H, Dong X, Sun S, et al. Effect of dietary supplementation with Aspergillus oryzae on growth performance, intestinal histology, and intestinal barrier function in weaned piglets. Animals. 2023;13(3):387.
  147. Kuo T, Chiou P, Chen L, Liang H, Chen C. Effect of dietary Aspergillus oryzae supplementation on the performance, antioxidant status, and intestinal health of broiler chickens under heat stress. Anim Feed Sci Technol. 2021;272:114769

Regular Issue Subscription Review Article
Volume 02
Issue 01
Received 24/12/2024
Accepted 31/12/2024
Published 02/01/2025


My IP

PlumX Metrics