Mukesh Chander,
Jasmeet Kaur,
- Assistant Professor, Department of Biotechnology, Khalsa College (Autonomous) Amritsar, Punjab, India
- PG Student, Department of Biotechnology, Khalsa College (Autonomous) Amritsar, Punjab, India
Abstract
Marine biota; namely, actinomycetes, bacteria, fungi, microalgae, green algae, oceanic weeds, mangroves, and other extremophiles constitute about 90% of the oceanic biomass. The organisms are taxonomically diverse, biologically productive/active, and biochemically unique. These unique biochemiques may act as a great source for the discovery of new bioactive molecules, including anticancer drugs. The marines produce medicinally potent biochemicals; namely, sulfated saccharides, polyphenols, and, sterols. Only a few of these alkaloids have been studied for their pharmacological properties; namely, antitumor, immunostimulatory, and antioxidative activities. The phytochemicals may probably interact with macrophages, initiating cell death and prevent mutational damage to DNA, reducing event of carcinogenesis. Peptides are bioactive products, which are inherent to many marine species. These marine peptides are of immense nutraceutical and medicinal importance as they have broad range of bioactivities, including microbicidal, antiviral, antimelanoma, antioxidative, cardioprotective, immunomodulatory, analgesic, anti-anxiety, anti-diabetic, appetite suppressing, and neuroprotective activities which have attracted the attention of the pharmaceutical industry, which attempts to modify them for treatment, cure, and prevention of various diseases. Some of these peptides and their derivatives are highly valuable commercially and developed as pharmaceutical and nutraceuticals commercially. The marine habitat, little explored, may act as a potential source of novel bioactive compounds acting as prospective and potent biopharmaceuticals. The biologically and the artificially synthesized/modified form of these chemicals may prove as novel therapeutic agents. The recent progress in technology and deep-sea exploration missions have made the drug discovery from oceanic sources a reality, resulting in screening, isolation, and modification of drugs capable of curing cancer, Parkinson’s, Alzheimer’s, and various other uncurable disorders and diseases. The available technology and use of modern gadgets have brought the depths of ocean within human approach and now marine resource like sponges, corals, etc., can be studied for their potential utilization in biopharmaceutical industry. In future, various types of bioactive compounds discovered for treating the diseases and these marine bioactive compounds are very beneficial and have no side effects.
Keywords: Antioxidant, antitumor, bioactive molecules, biopharmaceuticals, microbes
[This article belongs to International Journal of Fungi ]
Mukesh Chander, Jasmeet Kaur. Aquatic Ecosystems: A Review on Prospecting of Anticancer Molecules from Fungi & Other Microbes. International Journal of Fungi. 2024; 01(02):1-22.
Mukesh Chander, Jasmeet Kaur. Aquatic Ecosystems: A Review on Prospecting of Anticancer Molecules from Fungi & Other Microbes. International Journal of Fungi. 2024; 01(02):1-22. Available from: https://journals.stmjournals.com/ijf/article=2024/view=172169
Browse Figures
References
- Shwab EK, Bok JW, Tribus M, Galehr J, Graessle S, Keller NP. Histone deacetylase activity regulates chemical diversity in Aspergillus. Eukaryot Cell. 2007;6(9):1656–64.
- Gerwick WH, Fenner AM. Drug discovery from marine microbes. Microb Ecol. 2013;65:800–6.
- Xiong ZQ, Zhang ZP, Li JH, Wei SJ, Tu GQ. Characterization of Streptomyces padanus JAU4234, a producer of actinomycin X2, fungichromin, and a new polyene macrolide antibiotic. Appl Environ Microbiol. 2012;78(2):589–92.
- Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites. 2012;2(2):303–36.
- Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drug. 2010;8(10):2619–38.
- Edwards DJ, Marquez BL, Nogle LM, McPhail K, Goeger DE, Roberts MA, Gerwick WH. Structure and biosynthesis of the jamaicamides, new mixed polyketide-peptide neurotoxins from the marine cyanobacterium Lyngbya majuscula. Chem Biol. 2004;11(6):817–33.
- Gross H. Genomic mining–a concept for the discovery of new bioactive natural products. Planta Medica. 2010;76(12):L_9.
- Newman DJ, Cragg GM, Snader KM. Natural products as sources of new drugs over the period 1981− 2002. J Nat Prod. 2003;66(7):1022–37.
- Radjasa OK, Vaske YM, Navarro G, Vervoort HC, Tenney K, Linington RG, Crews P. Highlights of marine invertebrate-derived biosynthetic products: their biomedical potential and possible production by microbial associants. Bioorg Medic Chem. 2011;19(22):6658–74.
- Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 2012;19(1):85–98.
- Mayer AM, Rodríguez AD, Taglialatela-Scafati O, Fusetani N. Marine pharmacology in 2009–2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drug. 2013;11(7):2510–73.
- Díaz M, Ferreras E, Moreno R, Yepes A, Berenguer J, Santamaría R. High-level overproduction of Thermus enzymes in Streptomyces lividans. Appl Microbiol Biotechnol. 2008;79:1001–8.
- Xiong H, Qi S, Xu Y, Miao L, Qian PY. Antibiotic and antifouling compound production by the marine-derived fungus Cladosporium F14. J Hydro-environ Res. 2009;2(4):264–70.
- Dash S, Jin C, Lee OO, Xu Y, Qian PY. Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J Industr Microbiol Biotechnol. 2009;36(8):1047–56.
- Plaza M, Amigo-Benavent M, Del Castillo MD, Ibáñez E, Herrero M. Facts about the formation of new antioxidants in natural samples after subcritical water extraction. Food Res Inter. 2010;43(10):2341–8.
- Blunt JW, Copp BR, Munro MH, Northcote PT, Prinsep MR. Marine natural products. Nat Prod Rep. 2006;23(1):26–78.
- Molinski TF, Dalisay DS, Lievens SL, Saludes JP. Drug development from marine natural products. Nat Rev Drug Discov. 2009;8(1):69–85.
- Chander M. Microbial production of biodegradable plastics from agricultural waste. Int J Res Anal Rev. 2019;3:593–602.
- Johnson JA, Citarasu T, Manjusha WA. Antimicrobial screening and identification of bioactive compounds present in marine sponge Zygomycale collected from Kanyakumari coast. J Chem Biol Phys Sci. 2012;2(1842):e1848.
- Macherla VR, Liu J, Sunga M, White DJ, Grodberg J, Teisan S, et al. Lipoxazolidinones A, B, and C: antibacterial 4-oxazolidinones from a marine actinomycete isolated from a Guam marine sediment. J Nat Prod. 2007;70(9):1454–7.
- Desjardine K, Pereira A, Wright H, Matainaho T, Kelly M, Andersen RJ. Tauramamide, a lipopeptide antibiotic produced in culture by Brevibacillus laterosporus isolated from a marine habitat: Structure elucidation and synthesis. J Nat Prod. 2007;70(12):1850–3.
- McArthur KA, Mitchell SS, Tsueng G, Rheingold A, White DJ, Grodberg J, et al. Lynamicins a− e, chlorinated bisindole pyrrole antibiotics from a novel marine actinomycete. J Nat Prod. 2008;71(10):1732–7.
- Abdel-Wahab MA, Asolkar RN, Inderbitzin P, Fenical W. Secondary metabolite chemistry of the marine-derived fungus Massarina, strain CNT-016. Phytochemistry. 2007;68(8):1212–8.
- Chander M, Kaur I. An industrial dye decolourisation by Phlebia Int J Curr Microbiol. 2015;4(5):217–26.
- Kralj A, Kehraus S, Krick A, van Echten-Deckert G, König GM. Two new depsipeptides from the marine fungus Spicellum roseum. Planta Medica. 2007;73(04):366–71.
- Prachyawarakorn V, Mahidol C, Sureram S, Sangpetsiripan S, Wiyakrutta S, Ruchirawat S, et al. Diketopiperazines and phthalides from a marine derived fungus of the order pleosporales. Planta Medica. 2008;74(01):69–72.
- Zhang M, Wang WL, Fang YC, Zhu TJ, Gu QQ, Zhu WM. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J Nat Prod. 2008;71(6):985–9.
- Sun X, Zhou X, Cai M, Tao K, Zhang Y. Identified biosynthetic pathway of aspergiolide A and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Biores Technol. 2009;100(18):4244–51.
- Xu J, Kjer J, Sendker J, Wray V, Guan H, Edrada R, Müller WE, Bayer M, Lin W, Wu J, Proksch P. Cytosporones, coumarins, and an alkaloid from the endophytic fungus Pestalotiopsis isolated from the Chinese mangrove plant Rhizophora mucronata. Bioorgan Medic Chem. 2009;17(20):7362–7.
- Fremlin LJ, Piggott AM, Lacey E, Capon RJ. Cottoquinazoline A and cotteslosins A and B, metabolites from an Australian marine-derived strain of Aspergillus versicolor. J Nat Prod. 2009;72(4):666–70.
- Lu Z, Wang Y, Miao C, Liu P, Hong K, Zhu W. Sesquiterpenoids and benzofuranoids from the marine-derived fungus Aspergillus ustus J Nat Prod. 2009;72(10):1761–7.
- Rios AD, Antunes LM, de LP Bianchi M. Bixin and lycopene modulation of free radical generation induced by cisplatin–DNA interaction. Food Chem. 2009;113(4):1113–8.
- Sithranga Boopathy N, Kathiresan KJ. Anticancer drugs from marine flora: An overview. J Oncol. 2010;2010(1):214186.
- Kathiresan K, Thiruneelakandan G. Prospects of lactic acid bacteria of marine origin. Indian J Biotechnol. 2008;7(2):170–7.
- Wollowski I, Rechkemmer G, Pool-Zobel BL. Protective role of probiotics and prebiotics in colon cancer. Am J Clinic Nutrit. 2001;73(2):451–5.
- Singh S, Kapoor S, Chander M, Gill PK. Recent update on serum alkaline and acid phosphatases in pre-and postoperative breast cancer patients. Sudan J Med Sci. 2022;17(1):70–8.
- Devine DA, Marsh PD. Prospects for the development of probiotics and prebiotics for oral applications. J Oral Microbiol. 2009;1(1):1949.
- Tanaka T, Tanaka M, Tanaka T. [Retracted] Oral carcinogenesis and oral cancer chemoprevention: A review. Pathol Res Int. 2011;2011(1):431246.
- Zhou G, Xin H, Sheng W, Sun Y, Li Z, Xu Z. In vivo growth-inhibition of S180 tumor by mixture of 5-Fu and low molecular λ-carrageenan from Chondrus ocellatus. Pharmacol Res. 2005;51(2):153–7.
- Aisa Y, Miyakawa Y, Nakazato T, Shibata H, Saito K, Ikeda Y, Kizaki M. Fucoidan induces apoptosis of human HS‐sultan cells accompanied by activation of caspase‐3 and down‐regulation of ERK pathways. Am Hematol. 2005;78(1):7–14.
- Richard B, Bouton MC, Loyau S, Lavigne D, Letourneur D, Jandrot-Perrus M, Arocas V. Modulation of protease nexin-1 activity by polysaccharides. Thrombos Haemos. 2006;95(02):229–35.
- Boisson-Vidal C, Zemani F, Caligiuri G, Galy-Fauroux I, Colliec-Jouault S, Helley D, et al. Neoangiogenesis induced by progenitor endothelial cells: Effect of fucoidan from marine algae. Cardiovascul Hematol Agent Med Chem. 2007;5(1):67–77.
- Li B, Lu F, Wei X, Zhao R. Fucoidan: structure and bioactivity. Molecules. 2008;13(8):1671–95.
- Kingston DG, Newman DJ. Taxoids: cancer-fighting compounds from nature. Curr Opinio Drug Discov Develop. 2007;10(2):130–44.
- Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100(1–2):72–9.
- Gross H, Goeger DE, Hills P, Mooberry SL, Ballantine DL, Murray TF, et al. Lophocladines, bioactive alkaloids from the red alga Lophocladia J Nat Prod. 2006;69(4):640–4.
- Gupta AP, Pandotra P, Sharma R, Kushwaha M, Gupta S. Marine resource: a promising future for anticancer drugs. Stud Nat Prod Chem. 2013;40:229–325.
- Kim MH, Joo HG. Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol lett. 2008;115(2):138–43.
- Marmot M, Atinmo T, Byers T, Chen J, Hirohata T, Jackson A, et al. Food, nutrition, physical activity and the prevention of cancer: a global perspective. UCL Disc. 2007;11(1), ):9–23
- Sithranga Boopathy N, Kathiresan KJ. Anticancer drugs from marine flora: An overview. J Oncol. 2010;2010(1):214186.
- Gerwick WH, Moore BS. Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol. 2012;19(1):85–98.
- Cuevas C, Francesch A. Development of Yondelis®(trabectedin, ET-743). A semisynthetic process solves the supply problem. Nat Prod Rep. 2009;26(3):322–37.
- Jordan MA, Kamath K, Manna T, Okouneva T, Miller HP, Davis C, et al. The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol Cancer Therapeut. 2005;4(7):1086–95.
- Storz U. Antibody-drug conjugates: Intellectual property considerations. Monoclon Antibod. 2015;7(6):989–1009.
- Abreu PA, Sousa TS, Jimenez PC, Wilke DV, Rocha DD, Freitas HP, et al. Identification of pyrroloformamide as a cytokinesis modulator. Chembiochem. 2014;15(4):501–6.
- Guimarães LA, Jimenez PC, Sousa TD, Freitas HP, Rocha DD, Wilke DV, et al. Chromomycin A2 induces autophagy in melanoma cells. Mar Drug. 2014;12(12):5839–55.
- Muigg P, Rosén J, Bohlin L, Backlund A. In silico comparison of marine, terrestrial and synthetic compounds using ChemGPS-NP for navigating chemical space. Phytochem Rev. 2013;12:449–57.
- Suarez-Jimenez GM, Burgos-Hernandez A, Ezquerra-Brauer JM. Bioactive peptides and depsipeptides with anticancer potential: sources from marine animals. Mar Drug. 2012;10(5):963–86.
- Ryan JT, Ross RP, Bolton D, Fitzgerald GF, Stanton C. Bioactive peptides from muscle sources: Meat and fish. Nutrients. 2011;3(9):765–91.
- Olivera BM. Conus peptides: biodiversity-based discovery and exogenomics. J Biologic Chem. 2006;281(42):31173–7.
- Da Costa JP, Cova M, Ferreira R, Vitorino R. Antimicrobial peptides: an alternative for innovative medicines? Appl Microbiol Biotechnol. 2015;99:2023–40.
- Zhang M, Li MF, Sun L. NKLP27: A teleost NK-lysin peptide that modulates immune response, induces degradation of bacterial DNA, and inhibits bacterial and viral infection. PLoS one. 2014;9(9):e106543.
- Narayana JL, Huang HN, Wu CJ, Chen JY. Efficacy of the antimicrobial peptide TP4 against Helicobacter pylori infection: in vitro membrane perturbation via micellization and in vivo suppression of host immune responses in a mouse model. Oncotarget. 2015;6(15):12936.
- Himaya SW, Dewapriya P, Kim SK. EGFR tyrosine kinase inhibitory peptide attenuates Helicobacter pylori-mediated hyper-proliferation in AGS enteric epithelial cells. Toxicol Appl Pharmacol. 2013;269(3):205–14.
- Hu X, Song L, Huang L, Zheng Q, Yu R. Antitumor effect of a polypeptide fraction from Arca subcrenata in vitro and in vivo. Mar Drug. 2012;10(12):2782–94.
- Zhan KX, Jiao WH, Yang F, Li J, Wang SP, Li YS, et al. Reniochalistatins A–E, cyclic peptides from the marine sponge Reniochalina stalagmitis. J Nat Prod. 2014;77(12):2678–84.
- Korhonen H. Milk-derived bioactive peptides: From science to applications. J Funct Food. 2009;1(2):177–87.
- Ko SC, Kim DG, Han CH, Lee YJ, Lee JK, Byun HG, et al. Nitric oxide-mediated vasorelaxation effects of anti-angiotensin I-converting enzyme (ACE) peptide from Styela clava flesh tissue and its anti-hypertensive effect in spontaneously hypertensive rats. Food Chem. 2012;134(2):1141–5.
- Leoncini E, Nedovic D, Panic N, Pastorino R, Edefonti V, Boccia S. Carotenoid intake from natural sources and head and neck cancer: a systematic review and meta-analysis of epidemiological studies. Cancer Epidemiol, Biomark Prevent. 2015;24(7):1003–11.
- Sohal RS, Weindruch R. Oxidative stress, caloric restriction, and aging. Science. 1996;273(5271):59–63.
- Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor XIIa and platelet aggregation. Life Sci. 2005;76(22):2607–19.
- Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption. J Food Sci. 2011;76(4):116–21.
- Duarte J, Vinderola G, Ritz B, Perdigón G, Matar C. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology. 2006;211(5):341–50.
- Yang R, Zhang Z, Pei X, Han X, Wang J, Wang L, et al. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chem. 2009;113(2):464–70.
- De Lisa E, Carella F, De Vico G, Di Cosmo A. The gonadotropin releasing hormone (GnRH)-like molecule in prosobranch Patella caerulea: potential biomarker of endocrine-disrupting compounds in marine environments. Zoologic Sci. 2013;30(2):135–40.
- Ryu B, Kim SK. Potential beneficial effects of marine peptide on human neuron health. Curr Prot Pep Sci. 2013;14(3):173–6.
- Zhu CF, Peng HB, Liu GQ, Zhang F, Li Y. Beneficial effects of oligopeptides from marine salmon skin in a rat model of type 2 diabetes. Nutrition. 2010;26(10):1014–20.
- Vetter I, J Lewis R. Therapeutic potential of cone snail venom peptides (conopeptides). Curr Topic Med Chem. 2012;12(14):1546–52.
- Buford VR, Kumar V, Kennedy BR. Relationship of various infection control interventions to the prevalence of multidrug-resistant Pseudomonas aeruginosa among US hospitals. American J Infect Cont. 2016;44(4):381–6.
- Devasahayam G, Scheld WM, Hoffman PS. Newer antibacterial drugs for a new century. Exp Opin Investigat Drug. 2010;19(2):215–34.
- Radji M, Agustama RA, Elya B, Tjampakasari CR. Antimicrobial activity of green tea extract against isolates of methicillin–resistant Staphylococcus aureus and multi–drug resistant Pseudomonas aeruginosa. Asian Pacific J Tropic Biomed. 2013;3(8):663–7.
- Skariyachan S, G. Rao A, Patil MR, Saikia B, Bharadwaj Kn V, Rao Gs J. Antimicrobial potential of metabolites extracted from bacterial symbionts associated with marine sponges in coastal area of Gulf of Mannar Biosphere, India. Lett Appl Microbiol. 2014;58(3):231–41.
- Thakur D, Yadav A, Gogoi BK, Bora TC. Isolation and screening of Streptomyces in soil of protected forest areas from the states of Assam and Tripura, India, for antimicrobial metabolites. J Mycol Médic. 2007;17(4):242–9.
- Şahin S, Elhussein EA. Valorization of a biomass: phytochemicals in oilseed by-products. Phytochem Rev. 2018;17:657–68.
- Hoppers A, Stoudenmire J, Wu S, Lopanik NB. Antibiotic activity and microbial community of the temperate sponge, Haliclona J Appl Microbiol. 2015;118(2):419–30.
- Chen Y, Wang C, Liu H, Qiu J, Bao X. Ag/SiO 2: a novel catalyst with high activity and selectivity for hydrogenation of chloronitrobenzenes. Chem Commun. 2005:(42):5298–300.
- Durán N, Marcato PD, De Souza GI, Alves OL, Esposito E. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotech. 2007;3(2):203–8.
- Lara HH, Ayala-Núnez NV, Ixtepan Turrent LD, Rodríguez Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotech. 201026:615–21.
- Leaper DJ. Silver dressings: their role in wound management. Inter Woun J. 2006;3(4):282–94.
- Zargar M, Hamid AA, Bakar FA, Shamsudin MN, Shameli K, Jahanshiri F, Farahani F. Green synthesis and antibacterial effect of silver nanoparticles using Vitex negundo Molecules. 2011;16(8):6667–76.
- Raimondi F, Scherer GG, Kötz R, Wokaun A. Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angewandte Chemie Int Ed. 2005;44(15):2190–209.
- Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16(10):2346.
- Lara HH, Ayala-Núnez NV, Ixtepan Turrent LD, Rodríguez Padilla C. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J Microbiol Biotech. 2010;26:615–21.
- Pal S, Tak YK, Song JM. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. 2007;73(6):1712–20.
- Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, et al. Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol–gel coating. Biomaterials. 2008;29(8):963–9.
- Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications and toxicity effects. Int Nano Lett. 2012;2(1):32–40
- Theivasanthi T, Alagar M. X-ray diffraction studies of copper nanopowder. arXiv preprint:1003.6068. 2010 Mar 31.
- Yoon KY, Byeon JH, Park JH, Hwang J. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles. Sci Total Environ. 2007;373(2–3):572–5.
- Shahverdi AR, Fakhimi A, Shahverdi HR, Minaian S. Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomed Nanotech Biol Med. 2007;3(2):168–71.
- John R, Florence S. Optical, structural and morphological studies of bean-like ZnS nanostructures by aqueous chemical method. Chalcogenide Lett. 2010;7(4).
- Brandon EF, Sparidans RW, van Ooijen RD, Meijerman I, Lazaro LL, Manzanares I, Beijnen JH, Schellens JH. In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Investigat New Drug. 2007;25:9–19.
- Sarkar S, Jana AD, Samanta SK, Mostafa G. Facile synthesis of silver nano particles with highly efficient anti-microbial property. Polyhedron. 2007;26(15):4419–26.
- Panáček A, Kvítek L, Prucek R, Kolář M, Večeřová R, Pizúrová N, et al. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. J Phys Chem B. 2006;110(33):16248–53.
- Chopra I. The increasing use of silver-based products as antimicrobial agents: A useful development or a cause for concern? J Antimicrob Chemotherapy. 2007;59(4):587–90.
- Sable R, Parajuli P, Jois S. Peptides, peptidomimetics, and polypeptides from marine sources: a wealth of natural sources for pharmaceutical applications. Mar Drug. 2017;15(4):124.
- Martins A, Vieira H, Gaspar H, Santos S. Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success. Mar Drug. 2014;12(2):1066–101.
- Lindequist U. Marine-derived pharmaceuticals–challenges and opportunities. Biomol Therapeut. 2016;24(6):561.
- Jirge SS, Chaudhari YS. Marine: the ultimate source of bioactives and drug metabolites. Inter J Res Ayurved Pharma. 2010;1(1):55–62
- Yadav RNS, Agarwala M. Phytochemical analysis of some medicinal plants. J Phytol. 2011;3(12):10–14.
- Berquin IM, Min Y, Wu R, Wu J, Perry D, Cline JM, et al. Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids. J Clinic Investig. 2007;117(7):1866–75.
- Lordan S, Ross RP, Stanton C. Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Mar Drug. 2011;9(6):1056–100.
- Brandon EF, Sparidans RW, van Ooijen RD, Meijerman I, Lazaro LL, Manzanares I, et al. In vitro characterization of the human biotransformation pathways of aplidine, a novel marine anti-cancer drug. Investig New Drug. 2007;25:9–19.
Volume | 01 |
Issue | 02 |
Received | 02/09/2024 |
Accepted | 15/09/2024 |
Published | 16/09/2024 |