Insilico Structural Analysis and Homology Modeling of Crustin Protein from Fiddler Crab Species

Year : 2024 | Volume :01 | Issue : 01 | Page : 1-7
By

J. Lokeshwari

K. Sathya

A. Nathiya

K. Shoba

  1. PG & Research Department of Biochemistry, D.K.M College for Women (Autonomus), Vellore Tamil Nadu India
  2. PG & Research Department of Biochemistry, D.K.M College for Women (Autonomus), Vellore Tamil Nadu India
  3. PG & Research Department of Biochemistry, D.K.M College for Women (Autonomus), Vellore Tamil Nadu India
  4. PG & Research Department of Biochemistry, D.K.M College for Women (Autonomus), Vellore Tamil Nadu India

Abstract

In terms of biomass and ecological or economic importance, the crustacea are the largest, most noticeable, and possibly, the most significance group of marine or aquatic arthropods. Because of their enormous commercial value and the necessity to prevent disease outbreaks in the shellfish aquaculture industry, decapods are the experimental animals of choice for practically all biological studies involving immune responses. Antimicrobial host-defense peptides (AMPs) are major components of metazoan immunity, especially for invertebrates that lack adaptive immune system. In addition to the quick and effective neutralizing action against invading microorganisms (e.g. Gram-positive and Gram-negative bacteria, yeast, filamentous fungi and enveloped viruses), these natural antibiotics may by play multifunctional roles in host-pathogens interaction by regulating important components of immunity upon infections. Antimicrobial protein crustin sequences from species of fiddler crab were obtained in FASTA format from the NCBI database. Structural and functional investigations of antimicrobial protein fiddler crabs are predicted to have a broad range of medical applications in the future. Procheckonline software was also used to give us the verification of the structure obtained.

Keywords: Crustacea, AMP, fiddler crab, Crustin, bioinformatics, NCBI, Rapper

[This article belongs to International Journal of Cheminformatics(ijci)]

How to cite this article: J. Lokeshwari, K. Sathya, A. Nathiya, K. Shoba. Insilico Structural Analysis and Homology Modeling of Crustin Protein from Fiddler Crab Species. International Journal of Cheminformatics. 2024; 01(01):1-7.
How to cite this URL: J. Lokeshwari, K. Sathya, A. Nathiya, K. Shoba. Insilico Structural Analysis and Homology Modeling of Crustin Protein from Fiddler Crab Species. International Journal of Cheminformatics. 2024; 01(01):1-7. Available from: https://journals.stmjournals.com/ijci/article=2024/view=150744

References

  1. Aggressive Waves in the Lemon-Clawed Fiddler Crab (Uca perplexa): A Regional “Dialect” in Fiji, Judith S. Weis and Peddrick Weis. ISRN Biodiversity. Research Article (4 pages), Article ID 319590, Volume 2013 (2013)
  2. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakas DT, Lang PT, et al. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015; 36:1132–56. [PubMed]
  3. Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531–568. [PubMed]
  4. Ashton, E.C., McIntonsh D.J. and Hoghart, P.J. 2003. A baseline studyof the diversity and community ecology of crab and molluscan macrofauna in the Sematan mangrove forest, Sarawak, Malaysia. Journal of Tropical Ecology, 19:127–142.
  5. Backwell, P.Y., Christy, J. H. Telford, S. R. Jennions, M. D and Passmore, N.I. 2000. Dis honest signalling in a fiddler crab. Proceedings of the Society Series, B 267: 1–6.
  6. Bolia A, Ozkan SB. Adaptive BP-Dock: an induced fit docking approach for full receptor flexibility. J Chem Inf Model. 2016; 56:734–46. [PubMed]
  7. Brady GP, Jr., Stouten PF. Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des. 2000;14(4):383–401. [PubMed]
  8. Brylinski M, Feinstein WP. EFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J Comput Aided Mol Des. 2013; 27:551–67. [PubMed]
  9. Brylinski M, Skolnick J. A threading-based method (FINDSITE) for ligand-binding site prediction and functional annotation. Proc Natl Acad Sci USA. 2008; 105:129–34.  [PubMed]
  10. Burley SK, Berman HM, Christie C, Duarte JM, Feng Z, Westbrook J, et al. RCSB Protein Data Bank: Sustaining a living digital data resource that enables breakthroughs in scientific research and biomedical education. Protein Sci. 2018; 27:316–30.  [PubMed]
  11. CairéBarreto , Jaqueline da Rosa Coelho , Jianbo Yuan , Jianhai Xiang , Luciane Maria Perazzolo , Rafael Diego RosaSpecific Molecular Signatures for Type II Crustins in Penaeid Shrimp Uncovered by the Identification of Crustin-Like Antimicrobial Peptides in Litopenaeusvannamei2018 Jan 16;16(1):31. doi: 10.3390/md16010031 PMID: 29337853
  12. Cao Y, Li L. Improved protein-ligand binding affinity prediction by using a curvature-dependent surface-area model. 2014; 30:1674–80. [PubMed]
  13. Cao Yang, Wentao Dai ZM. Evaluation of Protein–Ligand Docking by Cyscore. Comput Drug Discov Des. 2018; 1762:223–32.
  14. Capra John A., Laskowski Roman A., Thornton Janet M., Singh Mona, Funkhouser Thomas A. Predicting Protein Ligand Binding Sites by Combining Evolutionary Sequence Conservation and 3D Structure. PLoS Computational Biology. 2009;5(12): e1000585. [ [PubMed]
  15. Claussen H, Buning C, Rarey M, Lengauer T. FlexE: efficient molecular docking considering protein structure variations. J Mol Biol. 2001;308(2):377–395. [PubMed]
  16. Crane, J., 1975. Eastern pacific Expeditions of the New York Zoological society. XXVI. Crabs of the genus Uca from the West coast of Central America. Zoological NY, 26:145–208.
  17. Cross JB, Thompson DC, Rai BK, Baber JC, Fan KY, Hu Y, Humblet C. Comparison of several molecular docking programs: pose prediction and virtual screening accuracy. J Chem Inf Model. 2009;49(6):1455–1474. [PubMed]
  18. Dahdouh-Guebas, F., M. Giuggioli, A. Oluoch, M. Vannini and Cannicci, S. 1999. Feeding habits of non-ocypodid crab from two mangrove forests in Kenya. Bulletin of Marine Science. 64: 291–297.
  19. Dai W, Wu A, Ma L, Li YX, Jiang T, Li YY. A novel index of protein-protein interface propensity improves interface residue recognition. BMC Syst Biol. 2016; 10:381–92.  [PubMed]
  20. Feinstein WP, Brylinski M. Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J Cheminform. 2015; 7:1– [PubMed]
  21. Fischer E. Einfluss der configuration auf die wirkungderenzyme. Dt. Chem. Ges. 1894; 27:2985–2993.
  22. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE, Francis P, Shenkin PS. Glide: a new approach for rapid, accurate docking and scoring. 1 Method and assessment of docking accuracy. J Med Chem. 2004;47(7):1739–1749. [PubMed]
  23. Ghersi D, Sanchez R. Improving accuracy and efficiency of blind protein-ligand docking by focusing on predicted binding sites. Proteins Struct FunctBioinforma. 2009; 74:417–24. [PubMed]
  24. Glaser F, Morris RJ, Najmanovich RJ, Laskowski RA, Thornton JM. A method for localizing ligand binding pockets in protein structures. 2006;62(2):479–488. [PubMed]
  25. Goodford PJ. A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem. 1985;28(7):849–857. [PubMed]
  26. Grosdidier A, Zoete V, Michielin O. Blind docking of 260 protein-ligand complexes with eadock 2.0. J Comput Chem. 2010; 30:2021–30. [PubMed]
  27. Grosdidier A, Zoete V, Michielin O. SwissDock, a protein-small molecule docking web service based on EADock DSS. Nucleic Acids Res. 2011; 39:270–7.  [PubMed]
  28.   Hammes GG. Multiple conformational changes in enzyme catalysis. 2002;41(26):8221–8228. [PubMed]
  29. Hartnoll, R.G., 1975.The Grapsidae and Ocypodidae (Decapoda: Brachyura) of Tanzania. J. Zool., 177: 305–328.
  30. Hartshorn MJ, Verdonk ML, Chessari G, Brewerton SC, Mooij WTM, Mortenson PN, et al. Diverse, high-quality test set for the validation of protein-ligand docking performance. J Med Chem. 2007; 50:726–41. [PubMed]
  31. Hassan NM, Alhossary AA, Mu Y, Kwoh CK. Protein-ligand blind docking using QuickVina-W with inter-process spatio-temporal integration. Sci Rep 2017; 7:15451.  [PubMed]
  32. Hendlich M, Rippmann F, Barnickel G. LIGSITE: Automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model. 1997; 15:359–63. [PubMed]
  33. Hetényi C, Van Der Spoel D. Blind docking of drug-sized compounds to proteins with up to a thousand residues. FEBS Lett. 2006; 580:0–1450. [PubMed]
  34. Hetényi C, van der Spoel D. Efficient docking of peptides to proteins without prior knowledge of the binding site. Protein Sci. 2002; 11:1729–37. [PubMed]
  35. Icely, J.D., and Jones, D.A. 1975. Factors affecting the distribution of the genus Uca (Crustacea: Ocypodidade) on an East African shore. Estuarine and Coastal Marine Science., 6: 315–325.
  36. Iorga B, Herlem D, Barré E, Guillou C. Acetylcholine nicotinic receptors: finding the putative binding site of allosteric modulators using the “blind docking” approach. J Mol Model. 2006; 12:366–72. [PubMed]
  37. Jiang F, Kim SH. “Soft docking”: matching of molecular surface cubes. J Mol Biol. 1991;219(1):79–102. [PubMed]
  38. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997; 267:0–748. [PubMed]
  39. Mengxi Yang , XiaoruiGuo , Tuo Chen , Peng Li , Tiaoyi Xiao , Zhenyan Dai , Yi Hu .Effect of dietary replacement of fish meal by poultry by-product meal on the growth performance, immunity, and intestinal health of juvenile red swamp crayfish, procambarus clarkia2022 Dec:131:381–390.doi: 10.1016/j.fsi.2022.10.025Epub 2022 Oct 17 PMID:
  40. Ming Li , Chunxia Ma , Haoyang Li , JinxiaPeng , DigangZeng , Xiaohan Chen , Chaozheng Li .Molecular cloning, expression, promoter analysis and functional characterization of a new Crustin from Litopenaeusvannamei. doi: 10.1016/j.fsi.2017.12.002 Epub 2017 Dec 6PMID: 29208497.
  41. Paula Terra Bandeira , Javier Vernal , Gabriel Machado Matos , NatanaelDantasFarias , HernánTerenzi , Aguinaldo Roberto Pinto , Margherita Anna Barracco , Rafael Diego Rosa .A Type IIacrustin from the pink shrimp Farfantepenaeuspaulensis (crusFpau) is constitutively synthesized and stored by specific granule-containing hemocyte subpopulationsish Shellfish Immunol. 2020 Feb: 97:294–299. doi: 10.1016/j.fsi.2019.12.055 Epub 2019 Dec 18. PMID: 31863905
  42. Ravichandran Rekha, Baskaralingam Vaseeharan , Ramachandran Ishwarya , Mahalingam Anjugam, Naiyf S Alharbi , Shine Kadaikunnan , Jamal M Khaled , Mohammed N Al-Anbr , Marimuthu Govindarajan .Searching for crab-borne antimicrobial peptides: Crustin from Portunuspelagicus triggers biofilm inhibition and immune responses of Artemiasalina against GFP tagged Vibrio parahaemolyticus Dahv2..DOI: 1016/j.molimm.2018.07.024 Epub 2018 Jul 30PMID: 30071451
  43. Yongzhao Zhou , Qinghua Song , Yujie Liu , Yuying Sun , Jiquan Zhang .A novel type I Crustin from Exopalaemoncarinicauda: Antimicrobial ability related to conserved cysteine 2022 Aug:127:948–955 doi: 10.1016/j.fsi.2022.06.003. Epub 2022 Jun 3. PMID: 35661815
  44. Zhi-Qiang Du , Bo Li , Xiu-Li Shen , Kai Wang , Jie Du , Xiao-Dong Yu , Jian-Jun Yuan .A new antimicrobial peptide isoform, Pc-crustin 4 involved in antibacterial innate immune response in fresh water crayfish, Procambarusclarkii. . 2019 Nov: 94:861-870. doi: 10.1016/j.fsi.2019.10.003Epub 2019 Oct 1PMID: 31585246.

Regular Issue Subscription Original Research
Volume 01
Issue 01
Received March 11, 2024
Accepted March 18, 2024
Published June 14, 2024