Md. Emran Hossain,
- Professor, Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
Abstract
Heat stress poses a critical threat to dairy production, particularly in resource-constrained systems prevalent across tropical and subtropical regions. Elevated ambient temperatures, compounded by high humidity, directly impair feed intake, milk yield, reproductive efficiency, and overall animal welfare. In low-resource settings, conventional cooling technologies such as automated fans, sprinklers, and climate-controlled housing remain economically inaccessible. Therefore, cost-effective, locally adaptable, and sustainable solutions are essential for maintaining productivity and animal health. This review consolidates practical heat stress mitigation strategies applicable in economically challenged dairy systems, organized under ten core categories: housing design, shading techniques, water management, feeding practices, ventilation enhancement, bedding and flooring, grazing and animal movement, animal handling, behavioral support, and community-based interventions. The paper emphasizes the integration of passive cooling methods such as shade trees, natural ventilation, and strategic grazing management with behaviourally aligned handling and resource-sharing models. Each category is examined in terms of feasibility, affordability, and impact on animal performance and welfare. Special focus is given to region-specific practices and indigenous knowledge systems that enhance adaptability under climatic extremes. By adopting these tailored interventions, resource-poor dairy producers can significantly alleviate thermal stress, promote animal comfort, and foster sustainable livestock development with minimal financial input. The findings contribute to climate-resilient dairying under economic constraints.
Keywords: Dairy farming, heat stress, low-cost interventions, resource-limited systems, sustainable development
[This article belongs to International Journal of Climate Conditions ]
Md. Emran Hossain. Heat Stress Mitigation in Resource-Constrained Dairy Farming Systems: Practical Strategies for Sustainable Development. International Journal of Climate Conditions. 2025; 02(02):1-12.
Md. Emran Hossain. Heat Stress Mitigation in Resource-Constrained Dairy Farming Systems: Practical Strategies for Sustainable Development. International Journal of Climate Conditions. 2025; 02(02):1-12. Available from: https://journals.stmjournals.com/ijcc/article=2025/view=227055
References
1. C. P. Oliveira, F. C. de Sousa, A. L. da Silva, É. B. Schultz, R. I. Valderrama Londoño, and P. A. R. de Souza, “Heat Stress in Dairy Cows: Impacts, Identification, and Mitigation Strategies—A Review,” 2025, mdpi.com. doi: 10.3390/ani15020249.
2. C. Liu, Y. Cao, Z. Luo, Y. Liu, C. K. Reynolds, and …, “Heat Stress Monitoring, Modelling, and Mitigation in a Dairy Cattle Building in Reading, UK: Impacts of Current and Projected Heatwaves,” 2025, Elsevier. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S036013232500527X
3. I. Parikoglou and R. Finger, “The effect of heat stress on risk and efficiency in dairy farming,” Eur. Rev. Agric. …, 2025, doi: 10.1093/erae/jbaf013/8113824.
4. D. Țogoe and N. A. Mincă, “The Impact of Heat Stress on the Physiological, Productive, and Reproductive Status of Dairy Cows,” 2024, mdpi.com. doi: 10.3390/agriculture14081241.
5. A. Pontiggia et al., “Behavioural responses related to increasing core body temperature of grazing dairy cows experiencing moderate heat stress,” 2024, Elsevier. doi: 10.1016/j.animal.2024.101097.
6. H. Kim et al., “Inflammatory response in dairy cows caused by heat stress and biological mechanisms for maintaining homeostasis,” 2024, journals.plos.org. doi: 10.1371/journal.pone.0300719.
7. E. Choi, V. Carneiro de Souza, J. A. Dillon, E. Kebreab, and N. D. Mueller, “Comparative analysis of thermal indices for modeling cold and heat stress in US dairy systems,” 2024, Elsevier. doi: 10.3168/jds.2023-24412.
8. A. Aloia, A. Maggiolino, L. Forte, and P. De Palo, “Heat stress measuring methods in dairy cows,” Acta IMEKO, vol. 13, no. 1, 2024, doi: 10.21014/ACTAIMEKO.V13I1.1619.
9. L. Chen, V. M. Thorup, A. B. Kudahl, and S. Østergaard, “Effects of heat stress on feed intake, milk yield, milk composition, and feed efficiency in dairy cows: A meta-analysis,” 2024, Elsevier. doi: 10.3168/jds.2023-24059.
10. D. Lovarelli, G. Minozzi, A. Arazi, M. Guarino, and F. Tiezzi, “Effect of extended heat stress in dairy cows on productive and behavioral traits,” 2024, Elsevier. doi: 10.1016/j.animal.2024.101089.
11. S. A. Asmarasari et al., “A review of dairy cattle heat stress mitigation in Indonesia,” 2023, pmc.ncbi.nlm.nih.gov. doi: 10.14202/vetworld.2023.1098-1108.
12. F. Petrocchi Jasinski, C. Evangelista, L. Basiricò, and U. Bernabucci, “Responses of Dairy Buffalo to Heat Stress Conditions and Mitigation Strategies: A Review,” 2023, mdpi.com. doi: 10.3390/ani13071260.
13. A. R. Sesay, “Effect of heat stress on dairy cow production, reproduction, health, and potential mitigation strategies,” 2023, file.mixpaper.cn. doi: 10.21839/jaar.2023.v8.8371.
14. D. E. Buffington and R. J. Collier, “Design Parameters for Shade Management Systems for Dairy Cows in Hot, Humid Climates.,” ASAE Publ., pp. 100–110, 1983, [Online]. Available: https://elibrary.asabe.org/abstract.asp?aid=33845
15. R. Kamal, T. Dutt, M. Patel, A. Dey, P. K. Bharti, and P. C. Chandran, “Heat stress and effect of shade materials on hormonal and behavior response of dairy cattle: a review,” Trop. Anim. Health Prod., vol. 50, no. 4, pp. 701–706, 2018, doi: 10.1007/s11250-018-1542-6.
16. M. R. H. Rakib, V. Messina, J. I. Gargiulo, N. A. Lyons, and S. C. Garcia, “Potential use of HSP70 as an indicator of heat stress in dairy cows – a review,” J. Dairy Sci., vol. 107, no. 12, pp. 11597–11610, 2024, doi: 10.3168/jds.2024-24947.
17. C. A. Becker, R. J. Collier, and A. E. Stone, “Invited review: Physiological and behavioral effects of heat stress in dairy cows,” J. Dairy Sci., vol. 103, no. 8, pp. 6751–6770, 2020, doi: 10.3168/jds.2019-17929.
18. L. Polsky and M. A. G. von Keyserlingk, “Invited review: Effects of heat stress on dairy cattle welfare,” J. Dairy Sci., vol. 100, no. 11, pp. 8645–8657, 2017, doi: 10.3168/jds.2017-12651.
19. C. P. Ghosh, “Heat Stress in Dairy Animals – Its Impact and Remedies: A Review,” 2017, researchgate.net. doi: 10.18782/2320-7051.2577.
20. C. T. Kadzere, M. R. Murphy, N. Silanikove, and E. Maltz, “Heat stress in lactating dairy cows: A review,” Livest. Prod. Sci., vol. 77, no. 1, pp. 59–91, 2002, doi: 10.1016/S0301-6226(01)00330-X.
21. P. Atrian and H. A. Shahryar, “Heat Stress in Dairy Cows (A Review),” 2012, Citeseer. [Online]. Available: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=88e5efbef956c6ee6f6c3c97026c4cae81824942
22. B. Ji et al., “A review of measuring, assessing and mitigating heat stress in dairy cattle,” Biosyst. Eng., vol. 199, pp. 4–26, 2020, doi: 10.1016/j.biosystemseng.2020.07.009.
23. L. Min et al., “Nutritional strategies for alleviating the detrimental effects of heat stress in dairy cows: a review,” Int. J. Biometeorol., vol. 63, no. 9, pp. 1283–1302, 2019, doi: 10.1007/s00484-019-01744-8.
24. P. Herbut, S. Angrecka, and J. Walczak, “Environmental parameters to assessing of heat stress in dairy cattle—a review,” 2018, Springer. doi: 10.1007/s00484-018-1629-9.
25. A. Sammad et al., “Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities,” Animals, vol. 10, no. 5, p. 793, 2020, doi: 10.3390/ani10050793.
26. J. Hendricks, K. E. Mills, L. V. Sirovica, L. Sundermann, S. E. Bolton, and M. A. G. von Keyserlingk, “Public perceptions of potential adaptations for mitigating heat stress on Australian dairy farms,” 2022, Elsevier. doi: 10.3168/jds.2022-21813.
27. J. M. Mbuthia, M. Mayer, and N. Reinsch, “Modeling heat stress effects on dairy cattle milk production in a tropical environment using test-day records and random regression models,” 2021, Elsevier. doi: 10.1016/j.animal.2021.100222.
28. E. Galán, P. Llonch, A. Villagrá, H. Levit, S. Pinto, and A. Del Prado, “A systematic review of non-productivityrelated animal-based indicators of heat stress resilience in dairy cattle,” 2018, journals.plos.org. doi: 10.1371/journal.pone.0206520.
29. M. R. H. Rakib et al., “Effect of heat stress on udder health of dairy cows,” J. Dairy Res., vol. 87, no. 3, pp. 315–321, 2020, doi: 10.1017/S0022029920000886.
30. J. J. Vermunt, “Heat stress in dairy cattle – Some potential health risks associated with the nutritional management of the condition,” J. Clin. Vet. Res., vol. 1, no. 1, pp. 1–6, 2022, doi: 10.54289/jcvr2100102.
31. J. B. Nzeyimana, C. Fan, Z. Zhuo, J. Butore, and J. Cheng, “Heat stress effects on the lactation performance, reproduction, and alleviating nutritional strategies in dairy cattle, a review,” J. Anim. Behav. Biometeorol., vol. 11, no. 3, 2023, doi: 10.31893/jabb.23018.
32. W. K. Sanchez, M. A. McGuire, and D. K. Beede, “Macromineral Nutrition by Heat Stress Interactions in Dairy Cattle: Review and Original Research,” J. Dairy Sci., vol. 77, no. 7, pp. 2051–2079, 1994, doi: 10.3168/jds.S0022-0302(94)77150-2.
33. T. Gorniak, U. Meyer, K. H. Südekum, and S. Dänicke, “Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate,” Arch. Anim. Nutr., vol. 68, no. 5, pp. 358–369, 2014, doi: 10.1080/1745039X.2014.950451.
34. U. Bernabucci and M. Mele, “Effect of heat stress on animal production and welfare: the case of dairy cow,” 2014, researchgate.net. [Online]. Available: https://www.researchgate.net/profile/Marcello-Mele/publication/293172884_Effect_of_heat_stress_on_animal_production_and_welfare_the_case_of_dairy_cow/links/572b092f08ae2efbfdbcb98b/Effect-of-heat-stress-on-animal-production-and-welfare-the-case-of-dairy-c
35. D. E. Spiers, J. N. Spain, M. R. Ellersieck, and M. C. Lucy, “Strategic application of convective cooling to maximize the thermal gradient and reduce heat stress response in dairy cows,” 2018, Elsevier. doi: 10.3168/jds.2017-14283.
36. A. B. Garcia, N. Angeli, L. Machado, F. C. de Cardoso, and F. Gonzalez, “Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil,” Trop. Anim. Health Prod., vol. 47, no. 5, pp. 889–894, 2015, doi: 10.1007/s11250-015-0804-9.
37. J. Noordhuizen, “Heat Stress in Dairy Cattle: Major Effects and Practical Management Measures for Prevention and Control,” 2015, academia.edu. doi: 10.15226/2381-2907/1/1/00103.
38. K. H. Ominski, K. M. Wittenberg, A. D. Kennedy, and S. A. Moshtaghi-Nia, “Physiological and production responses when feeding Aspergillus oryzae to dairy cows during short-term, moderate heat stress,” Anim. Sci., vol. 77, no. 3, pp. 485–490, 2003, doi: 10.1017/s1357729800054424.
39. T. Müschner-Siemens, G. Hoffmann, C. Ammon, and T. Amon, “Daily rumination time of lactating dairy cows under heat stress conditions,” J. Therm. Biol., vol. 88, 2020, doi: 10.1016/j.jtherbio.2019.102484.
40. S. Hempel et al., “Heat stress risk in European dairy cattle husbandry under different climate change scenarios-uncertainties and potential impacts,” 2019, esd.copernicus.org. doi: 10.5194/esd-10-859-2019.
41. [S. Fournel, V. Ouellet, and É. Charbonneau, “Practices for alleviating heat stress of dairy cows in humid continental climates: A literature review,” 2017, mdpi.com. doi: 10.3390/ani7050037.
42. R. A. Bucklin, L. W. Turner, D. K. Beede, D. R. Bray, and R. W. Hemken, “Methods to relieve heat stress for dairy cows in hot, humid climates,” Appl. Eng. Agric., vol. 7, no. 2, pp. 241–247, 1991, [Online]. Available: https://elibrary.asabe.org/abstract.asp?aid=26218
43. I. Flamenbaum and N. Galon, “Management of heat stress to improve fertility in dairy cows in Israel,” J. Reprod. Dev., vol. 56, no. SUPPL., 2010, doi: 10.1262/jrd.1056S36.
44. M. T. Karimi, G. R. Ghorbani, S. Kargar, and J. K. Drackley, “Late-gestation heat stress abatement on performance and behavior of Holstein dairy cows,” 2015, Elsevier. doi: 10.3168/jds.2014-9281.
45. R. Osei-Amponsah et al., “Heat stress impacts on lactating cows grazing australian summer pastures on an automatic robotic dairy,” 2020, mdpi.com. doi: 10.3390/ani10050869.
46. R. A. M. Benavides, H. S. Guerrero, and A. S. Atzori, “A conceptual model to describe heat stress in dairy cows from actual to questionable loops,” 2018, scielo.org.co. doi: 10.15446/acag.v67n1.60612.
47. A. V. G. Pereyra, V. M. May, C. G. Catracchia, M. A. Herrero, M. C. Flores, and M. Mazzini, Influence of water temperature and heat stress on drinking ater intake in dairy cows, vol. 70, no. 2. utoronto.scholaris.ca, 2010. doi: 10.4067/s0718-58392010000200017.
48. V. Sejian, C. G. Shashank, M. V. Silpa, A. P. Madhusoodan, C. Devaraj, and S. Koenig, “Non-Invasive Methods of Quantifying Heat Stress Response in Farm Animals with Special Reference to Dairy Cattle,” 2022, mdpi.com. doi: 10.3390/atmos13101642.
49. M. Ben Salem and R. Bouraoui, “Heat stress in Tunisia: Effects on dairy cows and potential means of alleviating it,” S. Afr. J. Anim. Sci., vol. 39, no. SUPPL. 1, pp. 256–259, 2009, doi: 10.4314/sajas.v40i5.65351.
50. C. C. Ekine-Dzivenu et al., “Evaluating the impact of heat stress as measured by temperature-humidity index (THI) on test-day milk yield of small holder dairy cattle in a sub-Sahara African climate,” 2020, Elsevier. doi: 10.1016/j.livsci.2020.104314.
51. E. Dovolou, T. Giannoulis, I. Nanas, and G. S. Amiridis, “Heat Stress: A Serious Disruptor of the Reproductive Physiology of Dairy Cows,” 2023, mdpi.com. doi: 10.3390/ani13111846.
52. S. Gupta, A. Sharma, A. Joy, F. R. Dunshea, and S. S. Chauhan, “The Impact of Heat Stress on Immune Status of Dairy Cattle and Strategies to Ameliorate the Negative Effects,” 2023, mdpi.com. doi: 10.3390/ani13010107.
53. P. Herbut et al., “The effects of heat stress on the behaviour of dairy cows-A review,” 2021, sciendo.com. doi: 10.2478/aoas-2020-0116.
54. L. N. Grinter, G. Mazon, and J. H. C. Costa, “Voluntary heat stress abatement system for dairy cows: Does it mitigate the effects of heat stress on physiology and behavior?,” 2023, Elsevier. doi: 10.3168/jds.2022-21802.
55. A. Ahmed, R. Tiwari, G. Mishra, B. Jena, M. Dar, and A. Bhat, “Effect of Environmental Heat Stress on Reproduction Performance of Dairy Cows-A Review,” 2015, academia.edu. doi: 10.5455/ijlr.20150421122704.
56. S. Chen, J. Wang, D. Peng, G. Li, J. Chen, and X. Gu, “Exposure to heat-stress environment affects the physiology, circulation levels of cytokines, and microbiome in dairy cows,” 2018, nature.com. doi: 10.1038/s41598-018-32886-1.
57. R. J. H. Dunn, N. E. Mead, K. M. Willett, and D. E. Parker, “Analysis of heat stress in UK dairy cattle and impact on milk yields,” Environ. Res. Lett., vol. 9, no. 6, 2014, doi: 10.1088/1748-9326/9/6/064006.
58. S. H. Kim, S. C. Ramos, R. A. Valencia, Y. Il Cho, and S. S. Lee, “Heat Stress: Effects on Rumen Microbes and Host Physiology, and Strategies to Alleviate the Negative Impacts on Lactating Dairy Cows,” Front. Microbiol., vol. 13, p. 804562, 2022, doi: 10.3389/fmicb.2022.804562.
59. L. W. Turner, J. P. Chastain, R. W. Hernken, R. S. Gates, and W. L. Crist, “Reducing heat stress in dairy cows through sprinkler and fan cooling,” 1992, academia.edu. [Online]. Available: https://www.academia.edu/download/44486789/v8_2_0251.pdf
60. H. Levit et al., “Dynamic cooling strategy based on individual animal response mitigated heat stress in dairy cows,” 2021, Elsevier. doi: 10.1016/j.animal.2020.100093.
61. G. Jones and C. C. Stallings, “Reducing Heat Stress for Dairy Cattle,” 1999, vtechworks.lib.vt.edu. [Online]. Available: https://vtechworks.lib.vt.edu/bitstreams/3687027c-eb85-4b48-9ed5-9d42b98bf1be/download

International Journal of Climate Conditions
| Volume | 02 |
| Issue | 02 |
| Received | 02/05/2025 |
| Accepted | 19/06/2025 |
| Published | 19/08/2025 |
| Publication Time | 109 Days |
PlumX Metrics
