This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Amaan Aftab F arooqui,
Hitesh Kumar Bhattarai,
Amaan Aftab F arooqui,
Akio Ghimire,
Rabin Pokhrel,
Puspa Chimauriya,
Abstract
The majority of organisms on earth display consistent 24-hour rhythms in their physiology and behavior due to circadian biology. Light and dark cycles play a key role in setting our internal body clock, which controls things like our sleep patterns, hormone levels, body temperature, and metabolism. The disruption of the light-dark cycle has significant effects on the molecular and behavioral rhythms of the circadian clock of hypothalamus. Gm45928 is a locus that represents naturally occurring readthrough transcription between the neighboring Clcf1 and Pold4 genes on chromosome 19. We employed transcriptomic analysis to investigate the gene expression patterns in hypothalamus tissues of M. musculus in varying light-dark conditions and different diet, antibiotic treatment conditions. To perform the analysis, we utilized the R Studio software, which provided us with a comprehensive set of tools and packages, enabling us to process and analyze the transcriptomic data efficiently. Comparing between the two treated groups, CD and ABX, reveals significantly higher gene expression, suggesting a potential protective effect of ABX treatment against gut microbes compared to the CD group.
Keywords: Immune cell, cellular function, Metadata, Differential Gene Expression, Normalization, Circadian Rhythm, Fold change, Hypothalamus Tissue
[This article belongs to International Journal of Cell Biology and Cellular Functions ]
Amaan Aftab F arooqui, Hitesh Kumar Bhattarai, Amaan Aftab F arooqui, Akio Ghimire, Rabin Pokhrel, Puspa Chimauriya. Light-Dark Cycle Disruption In Hypothalamus Tissue Of Mus Musculus Causes Change In The Expression Of Gm45928 Gene. International Journal of Cell Biology and Cellular Functions. 2025; 03(01):-.
Amaan Aftab F arooqui, Hitesh Kumar Bhattarai, Amaan Aftab F arooqui, Akio Ghimire, Rabin Pokhrel, Puspa Chimauriya. Light-Dark Cycle Disruption In Hypothalamus Tissue Of Mus Musculus Causes Change In The Expression Of Gm45928 Gene. International Journal of Cell Biology and Cellular Functions. 2025; 03(01):-. Available from: https://journals.stmjournals.com/ijcbcf/article=2025/view=203264
References
[1] R. V. D. a. K. Eckel-Mahan, “Clocks and sleep,” Clocks and sleep, 3,, pp. 189-226, 2021.
[2] A. M. &. B. M. M. Curtis, “Circadian clock disruption and the pathogenesis of metabolic and inflammatory diseases,” Journal of molecular medicine, Vols. 96(3-4), pp. 289-297, 2018.
[3] J. F. &. W. K. P. J. Duffy, “Entrainment of the Human Circadian System by Light.,” J Biol Rhythms, vol. 20, p. 326, 2005.
[4] a. S. J. G. Kathryn E. Berkseth*, “Hypothalamic gliosis associated with high fat diet feeding is reversible in mice: a combined immunohistochemical and magnetic resonance imaging study.,” ENERGY BALANCE-OBESITY, vol. 155(8), pp. 2858-2867, 2014.
[5] “Gm45928 predicted gene, 45928 [ Mus musculus (house mouse) ]. Bethesda (MD):
National Library of Medicine (US), National Center for Biotechnology Information; 2004 – [cited 2024 Oct 19]. Available from: https://www.ncbi.nlm.nih.gov/gene/105948585″.
[6] C. W. Claude-Henry Volmar, “Histone deacetylases (HDACs) and brain function,” Neuroepigenetics, vol. 1, pp. 20-27, 2015.
[7] “National Library of Medicine,” 2023. [Online]. Available: https://www.ncbi.nlm.nih.gov/gene/17472#gene-expression.
[8] C. J. Li CY, “Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure,” PLOS ONE, vol. 13(8), 2018.
[9] S. K. J. H. K. H. Miyoshi M, “Maternal Protein Restriction and Post-Weaning High-Fat Feeding Alter Plasma Amino Acid Profiles and Hepatic Gene Expression in Mice Offspring,” Foods, vol. 11(5, p. 753, 2022.
[10] C. D. Y. &. B. J. A. Iftode, “Replication protein A (RPA): the eukaryotic SSB.,” Critical reviews in biochemistry and molecular biology, vol. 34(3), pp. 141-180, 1999.
[11] d. L. O. B. L. P. R. D. B. F. E. L. P. P. R. R. R. M. T. A. F. A. T. M. M. F. Cramer A, “Role of SOCS2 in the Regulation of Immune Response and Development of the Experimental Autoimmune Encephalomyelitis,” Mediators Inflamm, 2019.
[12] J. b. M. A. B. A. Z. J Sieper, “Ankylosing spondylitis: an overview,” Hindenburgdamm 30, 12200 Berlin, Germany, 2002.
[13] H. I. M. I. W. V. Moll JM, “Associations between ankylosing spondylitis, psoriatic arthritis, Reither’s disease, the intestinal arthropathies, and Behcel’s syndrome,” 1974.
[14] F. E, “Age at disease onset and delayed diagnosis of spondyloarthropathies,” 1999.
[15] C. A. Brophy S, “Ankylosing Spondylitis: interaction between genes, joints, age at onset and disease expression.,” 2001.
[16] A. M. G. S. D. A. M. H. W. D. e. a. Gonzales-Roces S, “HLA-B27 polymorphism and worldwide susceptibility to ankylosing spondylitis,” 1997.
[17] M. S. R. J. T. J. T. J. Hammer RE, “Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders,” 1990.
[18] R. b. C. W. R. Schmitt E, “Long-term clinical investigation of patients with ankylosing spondylitis treated with 224Ra,” 1983.
[19] H. Z. Z. X. Q. T. X. G. C. Z. Y. Z. J. W. G. L. B. W. Y. Y. a. L. M. Zhiping Tan, “Identification of ANKDD1B variants in an ankylosing spondylitis pedigree and a sporadic patient,” BMC Medical Genetics, 2018.
[20] “Spondylitis Association of America,” [Online]. Available: https://spondylitis.org/aboutspondylitis/types-of-spondylitis/ankylosing-spondylitis/.
[21] “Mayo Foundation for Medical Education and Research (MFMER),” [Online]. Available:
https://www.mayoclinic.org/diseases-conditions/ankylosing-spondylitis/symptoms-causes/ syc-20354808.
[22] S. Bernstein, 2020. [Online]. Available: https://www.webmd.com/ankylosing-spondylitis/what-is-ankylosing-spondylitis.
[23] S. R. N. R. L. V. D. M. Amor B, “Predictive factors for the longterm outcome of spondyloarthropathies,” 1994.
[24] M. A. H. F. C. C. Feltkamp TEW, “Spondyloarthropathies in eastern Asia,” 2001.
[25] P. H. S. S. L. S. L. S. T. R. D. S. P. P. N. P. R. B. B. P. Anil Kumar Sah, “HLA-B27 Typing Using Simple Allele Specific PCR in Suspected Spondyloarthritis Patients Visiting Different Hospitals of Kathmandu,” Journal of Arthritis, 2020.
[26] G. C. T. J. Mohawk JA, “Central and peripheral circadian clocks in mammals.,” Annu Rev Neurosci., vol. 35, pp. 445-62, 2012.
[27] S. T. L. J. Saper CB, “Hypothalamic regulation of sleep and circadian rhythms.,” Nature, vol. 437(7063), 2005.
[28] H. D. H. A.-R. Fatemeh Vafaee, “Transcriptomic Data Normalization,” Encyclopedia of Bioinformatics and Computational Biology, pp. 364-371, 2019.
[29] M. D. M. D. J. &. S. G. K. Robinson, “edgeR: A bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26(1), pp. 139140., 2010.
[30] S.-L.-P. Zhao, “ComparisonofRNA-Seqandmicroarrayintranscriptomeprofiling of activated T cells,” PLOS ONE, p. 9, 2014.
[31] J. T. &. S. J. D. Leek, “Capturing heterogeneity ingene expression studies by surrogate variable analysis,” PLoS Genet, vol. 3, p. 161, 2007.
[32] W. S. N. P. Pavlidis, “Matrix2png: a utility for visualizing matrix data,” Bioinformatics, vol. 19, p. 295–296, 2003.
[33] M. E. V. C, “Insights into the regulation of protein abundance from proteomic and transcriptomic analyses,” Nat Rev Genet 13, vol. 13, p. 227–232, 2012.
[34] M. R. (. Jour, “Effect of Light-Dark Cycle Misalignment on the Hypothalamic-Pituitary-
Gonadal Axis, Testicular Oxidative Stress, and Expression of Clock Genes in Adult Male Rats,” p. 2000, 2020.
[35] A. D. R. C. A. e. a. Azzi, “Circadian behavior is light-reprogrammed by plastic DNA methylation,” Nat Neurosci, vol. 17, p. 377–382, 2014.
[36] .. S. L. H. L. V. A. d. S. A. D.-N. C., “Altered Circadian Rhythm and Metabolic Gene Profile in Rats Subjected to Advanced Light Phase Shifts,” PLOS, 2015.
[37] S. C. M. R. L. W. H. W. N. L. X. Z. X. Y. Z. L. Yiran Bu, “Per1/Per2 double knockout transcriptome analysis reveals circadian regulation of hepatic lipid metabolism,” Food Science and Human Wellness, vol. 12, pp. 1716-1729, 2023.
[38] F. M. H. D. L. V. Frazier K, “Mediators of Host–Microbe Circadian Rhythms in Immunity and Metabolism,” Biology, vol. 9(12), p. 417, 2020.
[39] L. M. L. G. M. W. M. S. B. Diana E. Gutierrez Lopez, “Circadian rhythms and the gut microbiome synchronize the host’s metabolic response to diet.,” Cell Metabolism, vol. 33(5), pp. 873-887, 2021.
[40] Y. L. W. W. e. a. Xu H, “Nucleolin regulates neural stem cell migration via activating mTOR signaling pathway.,” J Neurosci, vol. 34(13), pp. 4538-4551, 2014.
[41] W. D. K. C. e. a. Liu AC, “Intercellular coupling confers robustness against mutations in the SCN circadian clock network,” Cell, vol. 129(3), pp. 605-616, 2007.
[42] F. H. H. M. T. F. K. T. K. H. e. a. K. H, “Neuropeptide W: an anorectic peptide regulated by leptin and metabolic state,” Endocrinology, vol. 146(1), pp. 4217-4223, 2005.
Volume | 03 |
Issue | 01 |
Received | 27/11/2024 |
Accepted | 08/03/2025 |
Published | 10/03/2025 |
Publication Time | 103 Days |