Mohd. Wasiullah,
Piyush Yadav,
Sushil Yadav,
Roshan Yadav,
- Principal, Department of Pharmacy, Prasad Institute of Technology, Jaunpur, Uttar Pradesh, India
- Academic Head, Department of Pharmacy, Prasad Institute of Technology, Jaunpur, Uttar Pradesh, India
- Assistant Professor, Department of Pharmacy, Prasad Institute of Technology, Jaunpur, Uttar Pradesh, India
- Scholar, Department of Pharmacy, Prasad Institute of Technology, Jaunpur, Uttar Pradesh, India
Abstract
The creation of safe and efficient medications depends heavily on the art of drug design and process chemistry. This multidisciplinary discipline designs and optimizes drug candidates for therapeutic uses by fusing the concepts of biology, chemistry, and engineering. Researchers can develop compounds with pharmacological activity by using logical drug design techniques if they have a thorough understanding of the molecular targets implicated in disease pathways. By making it easier to predict molecular interactions and properties, computational techniques significantly improve the drug discovery process. These theoretical concepts are then translated into workable synthesis pathways, purification techniques, and scale-up procedures that are necessary to produce pharmaceuticals by process chemistry. This article delves into the complexities of process chemistry and drug design, examining the core ideas and real-world uses that spur innovation in Pharmaceutical Development.
Keywords: Drug design, Rational drug design, De novo design, Pharmacophore
[This article belongs to International Journal of Bioinformatics and Computational Biology ]
Mohd. Wasiullah, Piyush Yadav, Sushil Yadav, Roshan Yadav. The Art of Drug Design and Process Chemistry. International Journal of Bioinformatics and Computational Biology. 2025; 03(01):1-10.
Mohd. Wasiullah, Piyush Yadav, Sushil Yadav, Roshan Yadav. The Art of Drug Design and Process Chemistry. International Journal of Bioinformatics and Computational Biology. 2025; 03(01):1-10. Available from: https://journals.stmjournals.com/ijbcb/article=2025/view=197419
Browse Figures
References
1. Alonso H, Bliznyuk AA, Gready JE. Combining docking and molecular dynamic simulations in drug design. Med Res Rev. 2006;26(5):531–568. doi: 10.1002/med.20067.
2. Keserü GM, Makara GM. The influence of lead discovery strategies on the properties of drug candidates. Nat Rev Drug Discov. 2009;8(3):203–212. doi: 10.1038/nrd2796.
3. Goodnow Jr RA. Hit and lead identification: Integrated technology-based approaches. Drug Discov Today Technol. 2006;3(4):367–375. doi: 10.1016/j.ddtec.2006.12.009.
4. Fischer B, Merlitz H, Wenzel W. Receptor Flexibility for Large-Scale In Silico Ligand Screens. In: Molecular Modeling of Proteins. Springer; 2008. pp. 353–364.
5. Jeffrey LJ-L, Robert AC. Targeting protein multiple conformations: A structure-based strategy for kinase drug design. Curr Top Med Chem. 2007;7(14):1394–1407. doi: 10.2174/156802607781696783.
6. Chen YP, Chen F. Using bioinformatics techniques for gene identification in drug discovery and development. Curr Drug Metab. 2008;9(6):567–573. doi: 10.2174/138920008784892056.
7. Searls DB. Data integration: Challenges for drug discovery. Nat Rev Drug Discov. 2005;4(1):45–58. doi: 10.1038/nrd1608.
8. Yang Y, Adelstein SJ, Kassis AI. Target discovery from data mining approaches. Drug Discov Today. 2012;17:S16–S23. doi: 10.1016/j.drudis.2011.12.006.
9. Huang B, Schroeder M. LIGSITE csc: Predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct Biol. 2006;6:19. doi: 10.1186/1472-6807-6-19.
10. Song CM, Lim SJ, Tong JC. Recent advances in computer-aided drug design. Brief Bioinform. 2009;10(5):579–591. doi: 10.1093/bib/bbp023.
11. DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33. doi: 10.1016/j.jhealeco.2016.01.012.
12. Vohora D, Singh G, editors. Pharmaceutical medicine and translational clinical research. Academic Press; 2017.
13. Zhong F, Xing J, Li X, Liu X, Fu Z, Xiong Z, et al. Artificial intelligence in drug design. Sci China Life Sci. 2018;61(10):1191–1204. doi: 10.1007/s11427-018-9342-2.
14. Hou T, Xu X. Recent development and application of virtual screening in drug discovery: An overview. Curr Pharm Des. 2004;10(9):1011–1033. doi: 10.2174/1381612043452721.
15. Yu W, MacKerell AD. Computer-aided drug design methods. Antibiotics: methods and protocols. Methods Mol Biol. 2017:1520:85–106. doi: 10.1007/978-1-4939-6634-9_5.
16. Macalino SJ, Gosu V, Hong S, Choi S. Role of computer-aided drug design in modern drug discovery. Arch Pharm Res. 2015;38(9):1686–1701. doi: 10.1007/s12272-015-0640-5.
17. Duch W, Swaminathan K, Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr Pharm Des. 2007;13(14):1497–1508. doi: 10.2174/138161207780765954.
18. Huang HJ, Yu HW, Chen CY, Hsu CH, Chen HY, Lee KJ, et al. Current developments of computer-aided drug design J Taiwan Inst Chem Eng. 2010;41(6):623–635. doi: 10.1016/j.jtice.2010.03.017.
19. Baig MH, Ahmad K, Roy S, Ashraf JM, Adil M, Siddiqui MH, et al. Computer aided drug design: Success and limitations. Curr Pharm Des. 2016;22(5):572–581. doi: 10.2174/1381612822666151125000550.
20. Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST, Sridhar VS. Recent aspects on the pathogenesis mechanism, animal models and novel therapeutic interventions for Middle East respiratory syndrome coronavirus infections. Front Microbiol. 2019;10:569. doi: 10.3389/fmicb.2019.00569.
21. Amin SA, Jha T. Fight against novel coronavirus: A perspective of medicinal chemists.
Eur J Med Chem. 2020;201:112559. doi: 10.1016/j.ejmech.2020.112559.
22. Goyal B, Goyal D. Targeting the dimerization of the main protease of coronaviruses: A potential broad-spectrum therapeutic strategy. ACS Comb Sci. 2020;22(6):297–305. doi: 10.1021/acscombsci.0c00058.
23. Dai W, Zhang B, Jiang XM, Su H, Li J, Zhao Y, et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science. 2020;368(6497):1331–1335. doi: 10.1126/science.abb4489.
24. Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, et al. A review of SARS-CoV-2 and the ongoing clinical trials. Int J Mol Sci. 2020;21(7):2657. doi: 10.3390/ijms21072657.
25. Gopal D, Skariyachan S. Recent perspectives on COVID-19 and computer-aided virtual screening of natural compounds for the development of therapeutic agents towards SARS-CoV-2. In: Silico Modeling of Drugs Against Coronaviruses: Computational Tools and Protocols. 2021:433–471. doi: 10.1007/7653_2020_44.
26. Pillaiyar T, Meenakshisundaram S, Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today. 2020;25(4):668–688. doi: 10.1016/j.drudis.2020.01.015.
27. Batool M, Ahmad B, Choi S. A structure-based drug discovery paradigm. Int J Mol Sci. 2019;20(11):2783. doi: 10.3390/ijms20112783.
28. Lionta E, Spyrou G, K Vassilatis D, Cournia Z. Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Curr Top Med Chem. 2014;14(16):1923–1938. doi: 10.2174/1568026614666140929124445.
29. Kalyaanamoorthy S, Chen YP. Structure-based drug design to augment hit discovery. Drug Discov Today. 2011;16(17–18):831–839. doi: 10.1016/j.drudis.2011.07.006.
| Volume | 03 |
| Issue | 01 |
| Received | 14/12/2024 |
| Accepted | 07/01/2025 |
| Published | 07/02/2025 |
| Publication Time | 55 Days |
Login
PlumX Metrics

