R. Ganesh,
- Ex-Assistant Marketing Officer, Marketing Department, Savitribai Phule Pune University, Pune, Maharashtra, India, Maharashtra, India
Abstract
The emergence of artificial intelligence in pharmaceutical research [in drug discovery] is a revolution in pharmaceutical research, often combining computational methods with traditional research methods to solve problems. This review article describes various applications of artificial intelligence at various stages of drug development and highlights significant advances and approaches. He explores the critical role of intelligence in drug design, polypharmacology, drug synthesis, drug repurposing, and prediction of drug properties, such as toxicity, biological activity, and physicochemical properties. Although the progress in artificial intelligence is encouraging, this article also addresses the challenges and limitations facing the field, including data quality, performance, computational capability of theory, and ethical reasoning. Providing a broad overview of the role of artificial intelligence in drug discovery, this article highlights the potential of this technology to improve drug development while also acknowledging the challenges that must be overcome to achieve its results
Keywords: Three-dimensional (3D), Drug–protein interactions (DPIs), artificial intelligence (AI), variational autoencoders (VAEs)
[This article belongs to International Journal of Bioinformatics and Computational Biology ]
R. Ganesh. Use of AI Tools to Create New Drugs. International Journal of Bioinformatics and Computational Biology. 2024; 02(02):22-49.
R. Ganesh. Use of AI Tools to Create New Drugs. International Journal of Bioinformatics and Computational Biology. 2024; 02(02):22-49. Available from: https://journals.stmjournals.com/ijbcb/article=2024/view=191207
Browse Figures
References
- Abbas MK, Rassam A, Karamshahi F, Abunora R, Abouseada M. The role of AI in drug discovery. Chembiochem. 2024;25(14):e202300816.
- Wagner J, Dahlem AM, Hudson LD, Terry SF, Altman RB, Gilliland CT, DeFeo C, Austin CP. A dynamic map for learning, communicating, navigating and improving therapeutic development. Nat Rev Drug Discov. 2018;17(2):150.
- Tambuyzer E, Vandendriessche B, Austin CP, Brooks PJ, Larsson K, Miller Needleman KI, Valentine J, Davies K, Groft SC, Preti R, Oprea TI, Prunotto M. Therapies for rare diseases: therapeutic modalities, progress and challenges ahead. Nat Rev Drug Discov. 2020;19(2):93–111.
- Khan SR, Baghdasarian A, Fahlman RP, Michail K, Siraki AG. Current status and future prospects of toxicogenomics in drug discovery. Drug Discov Today. 2014;19(5):562–78.
- DiMasi JA, Grabowski HG, Hansen RW. Innovation in the pharmaceutical industry: new estimates of R&D costs. J Health Econ. 2016;47:20–33.
- Khan SR, Al Rijjal D, Piro A, Wheeler MB. Integration of AI and traditional medicine in drug discovery. Drug Discov Today. 2021;26(4):982–992.
- Chen W, Liu X, Zhang S, Chen S. Artificial intelligence for drug discovery: Resources, methods, and applications. Mol Ther Nucleic Acids. 2023;31:691–702.
- Bordukova M, Makarov N, Rodriguez-Esteban R, Schmich F, Menden MP. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin Drug Discov. 2024;19(1):33–42.
- Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36–S40.
- Paul D, Sanap G, Shenoy S, Kalyane D, Kalia K, Tekade RK. Artificial intelligence in drug discovery and development. Drug Discov Today. 2021;26(1):80–93.
- Wirtz BW, Weyerer JC, Geyer C. Artificial intelligence and the public sector—applications and challenges. Int J Pub Administ. 2018;42(7):596–615.
- Ali KA, Mohin S, Mondal P, et al. Influence of artificial intelligence in modern pharmaceutical formulation and drug development. Futur J Pharm Sci. 2024;10:53.
- Lamberti MJ, Wilkinson M, Donzanti BA, Wohlhieter GE, Parikh S, Wilkins RG, et al. A study on the application and use of artificial intelligence to support drug development. Clin Ther. 2019;41(8):1414–26.
- Vora LK, Gholap AD, Jetha K, Thakur RRS, Solanki HK, Chavda VP. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916.
- Chen Z, Liu X, Hogan W, Shenkman E, Bian J. Applications of artificial intelligence in drug development using real-world data. Drug Discov Today. 2021;26(5):1256–64.
- Deng J, Yang Z, Ojima I, Samaras D, Wang F. Artificial intelligence in drug discovery: applications and techniques. Brief Bioinform. 2022;23(1):
- Segall M. Advances in multiparameter optimization methods for de novo drug design. Expert Opin Drug Discov. 2014;9(7):803–17.
- Rushikesh Dhudum, Ankit Ganeshpurkar, Pawar A. Revolutionizing drug discovery: a comprehensive review of AI applications. Drug Drug Candid. 2024;3(1):148–71.
- Lavecchia A, Cerchia C. In silico methods to address polypharmacology: current status, applications and future perspectives. Drug Discov Today. 2016;21(2):288–98.
- Dara S, Dhamercherla S, Jadav SS, Babu CM, Ahsan MJ. Machine learning in drug discovery: a review. Artif Intell Rev. 2022;55(3):1947–1999.
- Cao R, Bhattacharya D, Hou J, et al. DeepQA: improving the estimation of single protein model quality with deep belief networks. BMC Bioinform. 2016;17:495.
- Spencer M, Eickholt J, Cheng J. A deep learning network approach to ab initio protein secondary structure prediction. IEEE/ACM Trans Comput Biol Bioinform. 2015;12(1):103–12.
- Xue LC, Dobbs D, Alexandre M.J.J. Bonvin, Vasant Honavar. Computational prediction of protein interfaces: A review of data driven methods. FEBS Lett. 2015;589(23):3516–26.
- Sarkar C, Das B, Rawat VS, Wahlang JB, Nongpiur A, Tiewsoh I, Lyngdoh NM, Das D, Bidarolli M, Sony HT. Artificial intelligence and machine learning technology driven modern drug discovery and development. Int J Mol Sci. 2023;24(3):2026.
- Lim H, Fatma Cankara, Tsai CJ, Ozlem Keskin, Nussinov R, Attila Gursoy. Artificial intelligence approaches to human-microbiome protein–protein interactions. Curr Opin Struct Biol. 2022;73:102328–8.
- Liu B, He H, Luo H, Zhang T, Jiang J. Artificial intelligence and big data facilitated targeted drug discovery. Stroke Vasc Neurol. 2019;4(4):206–213. doi: 10.1136/svn-2019-000290.
- Kandathil SM, Lau AM, Jones DT. Machine learning methods for predicting protein structure from single sequences. Curr Opin Struct Biol. 2023;81:102627–7.
- Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596(7873):583–9. doi: 10.1038/s41586-021-03819-2.
- Qureshi R, Irfan M, Gondal TM, Khan S, Wu J, Hadi MU, et al. AI in drug discovery and its clinical relevance. Heliyon. 2023;9(7):e17575. doi: 10.1016/j.heliyon.2023.e17575.
- Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)-Round XIV. Proteins. 2021;89(12):1607–1617. doi: 10.1002/prot.26237.
- Jing Y, Bian Y, Hu Z, Wang L, Xie XQ. Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era. AAPS J. 2018;20(3):58. doi: 10.1208/s12248-018-0210-0. Erratum in: AAPS J. 2018;20(4):79. doi: 10.1208/s12248-018-0243-4
- Justin S. Smith, Adrian E. Roitberg, and Olexandr Isayev ACS Med Chem Lett. 2018; 9(11):1065–9.
- Smith JS, Roitberg AE, Isayev O. Transforming computational drug discovery with machine learning and AI. ACS Med Chem Lett. 2018;9(11):1065–9. doi: 10.1021/acsmedchemlett.8b00437
- Narayanan RR. Impact of artificial intelligence (AI) on drug discovery and product development. Indian J Pharmaceut Ed Res. 2022;56(3s):s387–97.
- Powles J, Hodson H. Google DeepMind and healthcare in an age of algorithms. Health Technol (Berl). 2017;7(4):351–67. doi: 10.1007/s12553-017-0179-1.
- Wan F, Zeng J. Deep learning with feature embedding for compound-protein interaction prediction. Biorxiv. 2016:086033.
- Baek M, DiMaio F, Anishchenko I, Dauparas J, Ovchinnikov S, Lee GR, et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science. 2021;373(6557):871–6. doi: 10.1126/science.abj8754.
- Gaudelet T, Day B, Jamasb AR, Soman J, Regep C, Liu G, et al. Utilizing graph machine learning within drug discovery and development. Brief Bioinform. 2021;22(6):bbab159. doi: 10.1093/bib/bbab159.
- Baltrušaitis T, Ahuja C, Morency LP. Multimodal machine learning: a survey and taxonomy. IEEE Trans Patt Anal Mach Intell. 2019;41(2):423–43. doi: 10.1109/TPAMI.2018.2798607
- Han L, Liu Z, Jing Z, Liu Y, Chang H, Lei J, et al. Spatially resolved molecular and cellular atlas of the mouse brain. 2023;2023-12. doi: https://www.biorxiv.org/content/ 10.1101/2023.12.03.569501v1
- Jimenes-Vargas K, Pazos A, Munteanu CR, et al. Prediction of compound-target interaction using several artificial intelligence algorithms and comparison with a consensus-based strategy. J Cheminform. 2024;16:27. doi: https://doi.org/10.1186/s13321-024-00816-1.
- Abbas G, Rassam A, Karamshahi F, Rehab Abunora, Maha Abouseada. The role of AI in drug discovery. ChemBioChem. 2024;25(14):e202300816. doi: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300816
- Dhakal A, McKay C, Tanner JJ, Cheng J. Artificial intelligence in the prediction of protein-ligand interactions: recent advances and future directions. Brief Bioinform. 2022;23(1):bbab476. doi: 10.1093/bib/bbab476.
- Qiu X, Li H, Ver Steeg G, Godzik A. Advances in AI for protein structure prediction: implications for cancer drug discovery and development. Biomolecules. 2024;14(3):339. doi: https://doi.org/10.3390 /biom14030339
- Borkakoti N, Thornton JM. AlphaFold2 protein structure prediction: Implications for drug discovery. Curr Opin Struct Biol. 2023;78:102526. doi: 10.1016/j.sbi.2022.102526.
- Liu Z, Wu T, Xiang G, Wang H, Wang B, Feng Z, et al. Enhancing animal disease resistance, production efficiency, and welfare through precise genome editing. Int J Mol Sci. 2022;23(13):7331. doi: 10.3390/ijms23137331.
- Avorn J. The $2.6 billion pill–methodologic and policy considerations. N Engl J Med. 2015;372(20):1877–9. doi: 10.1056/NEJMp1500848.
- Abbas G, Rassam A, Karamshahi F, Rehab Abunora, Maha Abouseada. The role of AI in drug discovery. ChemBioChem. 2024;25(14):e202300816.
- Tian K, Shao M, Wang Y, Guan J, Zhou S. Boosting compound-protein interaction prediction by deep learning. Methods. 2016;110:64–72. doi: 10.1016/j.ymeth.2016.06.024.
- Wang L, You ZH, Chen X, Xia SX, Liu F, Yan X, et al. A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J Comput Biol. 2018;25(3):361–73. doi: https://doi.org/10.1089/CMB.2017.0135 /ASSET/IMAGES/LARGE/ FIGURE8.JPEG.
- Mayr A, Klambauer G, Unterthiner T, Steijaert M, Wegner JK, Ceulemans H, et al. Large-scale comparison of machine learning methods for drug target prediction on ChEMBL. Chem Sci. 2018;9(24):5441–51. doi: 10.1039/c8sc00148k
- AlQuraishi M. End-to-end differentiable learning of protein structure. Cell Syst. 2019;8(4):292–301.e3. doi: 10.1016/j.cels.2019.03.006.
- Current Opinion in Structural Biology | Journal | ScienceDirect.com by Elsevier Sciencedirect.com. 2024. doi: https://www.sciencedirect.com/journal/current-opinion-in-structural-biology
- Reddy AS, Zhang S. Polypharmacology: drug discovery for the future. Expert Rev Clin Pharmacol. 2013;6(1):41–7. doi: 10.1586/ecp.12.74. https://doi.org/10.1586/ECP.12.74.
- Blaschke T, Arús-Pous J, Chen H, Margreitter C, Tyrchan C, Engkvist O, et al. REINVENT 2.0: an AI tool for de novo drug design. J Chem Inf Model. 2020;60(12):5918–5922. doi: 10.1021/acs.jcim.0c00915.
- Pogány P, Arad N, Genway S, Pickett SD. De novo molecule design by translating from reduced graphs to SMILES. J Chem Info Model. 2018;59(3):1136–46.
- Nelson A, Karageorgis G. Natural product-informed exploration of chemical space to enable bioactive molecular discovery. RSC Med Chem. 2020;12(3):353–62. doi: 10.1039/d0md00376j.
- Lipinski C, Hopkins A. Navigating chemical space for biology and medicine. Nature. 2004;432(7019):855–61. doi: 10.1038/nature03193
- Hessler G, Baringhaus KH. Artificial intelligence in drug design. Molecules. 2018;23(10):2520. doi: 10.3390/molecules23102520.
- Domenico A, Nicola G, Daniela T, et al. Drug design of targeted chemical libraries based on artificial intelligence and pair-based multiobjective optimization. J Chem Info Model. 2020;60(10):4582–93. doi: 10.1021/acs.jcim.0c00517.
- Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discov Today. 2018;23(6):1241–50. doi: 10.1016/j.drudis.2018.01.039.. https://doi.org/10.1016/J.DRUDIS.2018.01.039.PubMedWeb of Science®Google Scholar
- Agu C, Obulose CN, Drug Dev Res. 2024;85:e22159. doi: https://doi.org/10.1002/DDR.22159.
- CASPubMedWeb of Science®Google Scholar
- Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent Sci. 2018;4(2):268–76. doi: 10.1021/acscentsci.7b00572.
- Merk D, Friedrich L, Grisoni F, Schneider G. De novo design of bioactive small molecules by artificial intelligence. Mol Inform. 2018;37(1–2):1700153. doi: 10.1002/minf.201700153.
- Segler MHS, Kogej T, Tyrchan C, Waller MP. Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent Sci. 2018;4(1):120–31. doi: 10.1021/acscentsci.7b00512.
- Klucznik T, Mikulak-Klucznik B, McCormack MP, Lima H, Szymkuć S, Manishabrata Bhowmick, et al. Efficient syntheses of diverse, medicinally relevant targets planned by computer and executed in the laboratory. Chem. 2018;4(3):522–32.
- Segler M, Preuss M, Waller M. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555:604–10. doi: https://doi.org/10.1038/nature25978.
- Schneider G, Clark DE. Automated de novo drug design: are we nearly there yet? Angewandte Chem Int Edit. 2019;58(32):10792–803.
- Popova M, Isayev O, Tropsha A. Deep reinforcement learning for de novo drug design. Sci Adv. 2018;4(7):eaap7885. doi: 10.1126/sciadv.aap7885.
- Simon Z, Peragovics A, Vigh-Smeller M, et al. Drug effect prediction by polypharmacology-based interaction profiling. J Chem Info Model. 2012;52(1):134–45. doi: 10.1021/ci2002022.
- Abbas G, Rassam A, Karamshahi F, Rehab Abunora, Maha Abouseada. The role of AI in drug discovery. ChemBioChem. 2024;25(14):e202300816.
- Rayka M, Firouzi R. GB‐score: minimally designed machine learning scoring function based on distance‐weighted interatomic contact features. Mol Inform. 2023;42(3):2200135.
- Ryu JY, Kim HU, Lee SY. Deep learning improves prediction of drug-drug and drug-food interactions. Proc Natl Acad Sci USA. 2018;115(18):E4304–E4311. doi: 10.1073/pnas.1803294115.
- Struble TJ, Alvarez JC, Brown SP, Chytil M, Cisar J, DesJarlais RL, et al. Current and future roles of artificial intelligence in medicinal chemistry synthesis. J Med Chem. 2020;63(16):8667–82. doi: 10.1021/acs.jmedchem.9b02120.
- Abou Hajal A, Al Meslamani AZ. Insights into artificial intelligence utilisation in drug discovery. J Med Econ. 2024;27(1):304–8. doi: 10.1080/13696998.2024.2315864.
- Rai M, Paudel N, Sakhrie M, Gemmati D, Khan IA, Tisato V, et al. Perspective on quantitative structure–toxicity relationship (QSTR) models to predict hepatic biotransformation of xenobiotics. Livers. 2023;3:448–62. doi: https://doi.org/10.3390/livers3030032
- Abbas G, Rassam A, Karamshahi F, Rehab Abunora, Maha Abouseada. The role of AI in drug discovery. ChemBioChem. 2024;25(14):e202300816. doi: https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cbic.202300816
- Jiang Y, Yu Y, Kong M, Mei Y, Yuan L, Huang Z, et al. Artificial intelligence for retrosynthesis prediction. Engineering. 2022;25:32–50.
- Liu B, Ramsundar B, Kawthekar P, Shi J, Gomes J, Luu Nguyen Q, et al. Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS Cent Sci. 2017;3(10):1103–13. doi: 10.1021/acscentsci.7b00303.
- Litao Yan, Elena L. Glassman, Tianyi Zhang. Visualizing Examples of Deep Neural Networks at Scale. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (CHI ’21). Association for Computing Machinery, New York, NY, USA. 2021. pp. 1–14. doi: https://doi.org/10.1145/3411764.3445654
- Segler MHS, Waller MP. Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry. 2017;23(25):5966–71. doi: 10.1002/chem.201605499.
- Segler MHS, Preuss M, Waller MP. Planning chemical syntheses with deep neural networks and symbolic AI. Nature. 2018;555(7698):604–10.
- Szymkuć S, Gajewska EP, Klucznik T, Molga K, Dittwald P, Startek M, et al. Computer-assisted synthetic planning: the end of the beginning. Angew Chem Int Ed Engl. 2016;55(20):5904–37. doi: 10.1002/anie.201506101C
- Lotfi Shahreza M, Ghadiri N, Mousavi SR, Varshosaz J, Green JR. A review of network-based approaches to drug repositioning. Brief Bioinform. 2018;19(5):878–92. doi: 10.1093/bib/bbx017.
- Parvathaneni V, Kulkarni NS, Muth A, Gupta V. Drug repurposing: a promising tool to accelerate the drug discovery process. Drug Discov Today. 2019;24(10):2076–85. doi: 10.1016/j.drudis.2019.06.014. https://doi.org/10.1016/J.DRUDIS.2019.06.014.CASPubMedWeb of Science®Google Scholar
- Mohanty, Harun AI Rashid M, Mridul M, Mohanty C, Swayamsiddha S. Application of artificial intelligence in COVID-19 drug repurposing. Diabet Metabol Syndr Clin Res Rev. 2020;14:1027–31. doi: https://doi.org/10.1016/J.DSX.2020.06.068.Google Scholar
- Yadav S, Singh A, Singhal R, Yadav JP. Revolutionizing drug discovery: the impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intell Pharm. 2024;2(3):367–80.
- Corsello M, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, et al. The drug repurposing hub: a next-generation drug library and information resource. Nat Med. 2017;23:405–8.
- ChemBioChem 2024 Jul 15 25(14). Available from: https://chemistry europe.onlinelibrary. wiley.com/toc/14397633/2024/25/14
- Lozano-Diez A, Zazo R, Toledano DT, Gonzalez-Rodriguez J. An analysis of the influence of deep neural network (DNN) topology in bottleneck feature based language recognition. PLoS ONE. 2017;12(8):e0182580–0.
- Aliper A, Plis S, Artemov A, Ulloa A, Mamoshina P, Zhavoronkov A. Deep learning applications for predicting pharmacological properties of drugs and drug repurposing using transcriptomic data. Mol Pharm. 2016;13(7):2524–30. doi: 10.1021/acs.molpharmaceut.6b00248.
- Mak KK, Wong YH, Pichika MR. Artificial intelligence in drug discovery and development. Drug discovery and evaluation: safety and pharmacokinetic assays. 2024:1461–98.
- Kadurin A, Nikolenko S, Khrabrov K, Aliper A, Zhavoronkov A. druGAN: an advanced generative adversarial autoencoder model for de novo generation of new molecules with desired molecular properties in silico. Mol Pharm. 2017;14(9):3098–104.
- Ozerov IV, Lezhnina KV, Izumchenko E, Artemov AV, Medintsev S, Vanhaelen Q, et al. In silico pathway activation network decomposition analysis (iPANDA) as a method for biomarker development. Nat Commun. 2016;7(1):13427.
- Li H, Sze K, Lu G, Ballester PJ. Machine‐learning scoring functions for structure‐based drug lead optimization. Wiley Interdisc Rev Comput Mol Sci. 2020;10(5):e1465.
- Zeng X, Xiang H, Yu L, et al. Accurate prediction of molecular properties and drug targets using a self-supervised image representation learning framework. Nat Mach Intell. 2022;4:1004–16. doi: https://doi.org/10.1038/s42256-022-00557-6
- Mohammad Jafari R, Sheibani M, Nezamoleslami S, Shayesteh S, Jand Y, Dehpour AR. Drug repositioning: a review. J Iran Med Council. 2018;1(1):7–10.
- Gatta G, van der Zwan JM, Casali PG, Siesling S, Dei Tos AP, Kunkler I, et al. RARECARE working group. Rare cancers are not so rare: the rare cancer burden in Europe. Eur J Cancer. 2011;47(17):2493–511. doi: 10.1016/j.ejca.2011.08.008.
- Padhy BM, Gupta YK. Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med. 2011;57(2):153–60. doi: 10.4103/0022-3859.81870.
- Hainsworth AH, Elahi FM, Corriveau RA. An introduction to therapeutic approaches to vascular cognitive impairment. Cerebr Circul Cognit Behav. 2021;2:100033. doi: 10.1016/j.cccb.2021.100033.
- Assmus F, Driouich, et al. Need for a standardized translational drug development platform: lessons learned from the repurposing of drugs for COVID-19. Microorganisms. 2022;10(8):1639. doi: 10.3390/microorganisms10081639.101B. E. Bloom, Expert Opin Orphan Drugs 2016, 4, 1–4. https://doi.org/10.1517/21678707.2016.1120664.
- CASWeb of Science®Google Scholar
- Novac N. Challenges and opportunities of drug repositioning. Trends Pharmacol Sci. 2013;34(5):267–72. doi: 10.1016/j.tips.2013.03.004
- Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3(8):673–83. doi: 10.1038/nrd1468.
- Tripathi MK, Nath A, Singh TP, Ethayathulla AS, Kaur P. Evolving scenario of big data and artificial intelligence (AI) in drug discovery. Mol Divers. 2021;25(3):1439–60.
- Murray CW, Erlanson DA, Hopkins AL, Keserü GM, Leeson PD, Rees DC, et al. Validity of ligand efficiency metrics. ACS Med Chem Lett. 2014;5(6):616–8.
- Kusumoto D, Yuasa S, Fukuda K. Induced pluripotent stem cell-based drug screening by use of artificial intelligence. Pharmaceuticals. 2022;15(5):562–2.
- Krishnan SR, Bung N, Vangala SR, Srinivasan R, Bulusu G, Roy A. De novo structure-based drug design using deep learning. J Chem Info Model. 2021;62(21):5100–9.
- Lin JH, Perryman AL, Schames JR, McCammon JA. Computational drug design accommodating receptor flexibility: the relaxed complex scheme. J Am Chem Soc. 2002;124(20):5632–3.
- Pereira JC, Caffarena ER, Dos Santos CN. Boosting docking-based virtual screening with deep learning. J Chem Inf Model. 2016;56(12):2495–2506. doi: 10.1021/acs.jcim.6b00355.
- Wu C, Gao R, Zhang Y, et al. PTPD: predicting therapeutic peptides by deep learning and word2vec. BMC Bioinform. 2019;20;456. https://doi.org/10.1186/s12859-019-3006-z
- Malik MS, Ahmed SA, Althagafi II, Ansari MA, Kamal A. Application of triazoles as bioisosteres and linkers in the development of microtubule targeting agents. RSC Med Chem. 2020;11(3):327–48. doi: 10.1039/c9md00458k.
- Elabar S. Review on multitarget drug design based on computational strategies for the treatment of Alzheimer’s disease. Alq J Med App Sci. 2021;4(2):181–90. https://doi.org/10.5281/zenodo.5248127
- Elbadawi M, McCoubrey LE, Gavins FKH, Ong JJ, Goyanes A, Gaisford S, et al. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci. 2021;42(9):745–57. doi: 10.1016/j.tips.2021.06.002.
- Huang X, Tang F, Hua Y, Li X. In silico prediction of drug‐induced ototoxicity using machine learning and deep learning methods. Chem Biol Drug Des. 2021;98(2):248–57.
- Panapitiya G, Girard M, Hollas A, Sepulveda J, Murugesan V, Wang W, et al. Evaluation of deep learning architectures for aqueous solubility prediction. ACS Omega. 2022;7(18):15695–710.
- Judson RS, et al. Integrated model of chemical perturbations of a biological pathway using 18 in vitro high-throughput screening assays for the estrogen receptor. Toxicol Sci. 2015;148(1):137–54.
- Yang X, Wang Y, Byrne R, Schneider G, Yang S. Concepts of artificial intelligence for computer-assisted drug discovery. Chem Rev. 2019;119(18):10520–10594. doi: 10.1021/acs.chemrev.8b00728.
- Singh S, Gupta H, Sharma P, Sahi S. Advances in artificial intelligence (AI)-assisted approaches in drug screening. Artif Intell Chem. 2023;2(1):100039–9.
- Basile AO, Yahi A, Tatonetti NP. Artificial intelligence for drug toxicity and safety. Trends Pharmacol Sci. 2019;40(9):624–35. doi: 10.1016/j.tips.2019.07.005.
- Rim KT. In silico prediction of toxicity and its applications for chemicals at work. Toxicol Environ Health Sci. 2020;12(3):191–202. doi: 10.1007/s13530-020-00056-4.
- Raies AB, Bajic VB. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip Rev Comput Mol Sci. 2016;6(2):147–72. doi: 10.1002/wcms.1240.
- Klambauer MG, Unterthiner T, Hochreiter S. DeepTox: Toxicity Prediction using Deep Learning. Front Environ Sci 2016;3:167215. doi: https://doi.org/10.3389/FENVS.2015.00080/BIBTEX.Google Scholar
- Jain S, Siramshetty VB, Alves VM, Muratov EN, Kleinstreuer N, Tropsha A, et al. Large-scale modeling of multispecies acute toxicity end points using consensus of multitask deep learning methods. J Chem Inf Model. 2021;61(2):653–63. doi: 10.1021/acs.jcim.0c01164. Epub 2021 Feb 3.
- Lysenko A, Sharma A, Boroevich KA, Tsunoda T. An integrative machine learning approach for prediction of toxicity-related drug safety. Life Sci Alliance. 2018;1(6):e201800098. doi: 10.26508/lsa.201800098
- Hasselgren C, Myatt GJ. Computational toxicology and drug discovery. Comput Toxicol Meth Prot. 2018:233–44.
- Vo AH, Van Vleet TR, Gupta RR, Liguori MJ, Rao MS. An overview of machine learning and big data for drug toxicity evaluation. Chem Res Toxicol. 2020;33(1):20–37. doi: 10.1021/acs.chemrestox.9b00227.
- Patlewicz G, Fitzpatrick JM. Current and future perspectives on the development, evaluation, and application of in silico approaches for predicting toxicity. Chem Res Toxicol. 2016;29(4):438–51.
- Algamal ZY, Lee MH, Al‐Fakih AM, Aziz M. High‐dimensional QSAR prediction of anticancer potency of imidazo [4, 5‐b] pyridine derivatives using adjusted adaptive LASSO. J Chemomet. 2015;29(10):547–56.
- Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A deep learning approach to antibiotic discovery. Cell. 2020;180(4):688–702.e13. doi: 10.1016/j.cell.2020.01.021. Erratum in: Cell. 2020;181(2):475–83. doi: 10.1016/j.cell.2020.04.001.
- Öztürk H, Özgür A, Ozkirimli E. DeepDTA: deep drug–target binding affinity prediction, Bioinformatics. 2018;34(17):i821–i829. doi: https://doi.org/10.1093/bioinformatics/bty593
- Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, et al. Deep-learning-based drug–target interaction prediction. J Prot Res. 2017:16(4):1401–9.
- Karimi M, Wu D, Wang Z, Shen Y. DeepAffinity: interpretable deep learning of compound-protein affinity through unified recurrent and convolutional neural networks. Bioinformatics. 2019;35(18):3329–38. doi: 10.1093/bioinformatics/btz111
- Pu L, Naderi M, Liu T, Wu HC, Mukhopadhyay S, Brylinski M. eToxPred: a machine learning-based approach to estimate the toxicity of drug candidates. BMC Pharmacol Toxicol. 2019;20(1):2. doi: 10.1186/s40360-018-0282-6.
- Parvatikar PP, Patil S, Khaparkhuntikar K, Patil S, Singh PK, Sahana R, et al. Artificial intelligence: machine learning approach for screening large database and drug discovery. Antiviral Res. 2023;220:105740. doi: 10.1016/j.antiviral.2023.105740.
- Chauhan H, Bernick J, Prasad D, Masand V. The role of artificial neural networks on target validation in drug discovery and development. In: Artificial Neural Network for Drug Design, Delivery and Disposition. Academic Press; 2016. pp. 15–27
- Piroozmand F, Mohammadipanah F, Sajedi H. Spectrum of deep learning algorithms in drug discovery. Chem Biol Drug Des. 2020;96(3):886–901.
- Cheirdaris DG. Artificial neural networks in computer-aided drug design: an overview of recent advances. GeNeDis 2018: Comput Biol Bioinform. 2020;115–25.
- Içten E, Reklaitis GV, Nagy ZK. Advanced control for the continuous dropwise additive manufacturing of pharmaceutical products. In: Computer Aided Chemical Engineering. Elsevier; 2018. pp. 379–401.
- Silvestrini S, Lavagna M. Deep learning and artificial neural networks for spacecraft dynamics, navigation and control. Drones. 2022;6(10):270.
- Fernández-Delgado M, Sirsat MS, Cernadas E, Alawadi S, Barro S, Febrero-Bande M. An extensive experimental survey of regression methods. Neural Netw. 2019;111:11–34.
- Das MK, Chakraborty T. ANN in pharmaceutical product and process development. InArtificial neural network for drug design, delivery and disposition. Academic Press; 2016. pp. 277–93.
- Daina A, Zoete V. A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 2016;11(11):1117–21.
- Olawale F, Iwaloye O, Elekofehinti OO. Virtual screening of natural compounds as selective inhibitors of polo-like kinase-1 at C-terminal polo box and N-terminal catalytic domain. J Biomol Struct Dynam. 2022;40(24):13606–24.
- Ghasemi F, Mehridehnavi A, Pérez-Garrido A, Pérez-Sánchez H. Neural network and deep-learning algorithms used in QSAR studies: merits and drawbacks. Drug Discov Today. 2018;23(10):1784–90.
- Dahl GE, Jaitly N, Salakhutdinov R. Multi-task neural networks for QSAR predictions. arXiv preprint arXiv:1406.1231. 2014.
- Tealab A, Hefny H, Badr A. Forecasting of nonlinear time series using ANN. Fut Comput Inform J. 2017;2(1):39–47.
- Bielecki A. Models of neurons and perceptrons: selected problems and challenges. Berlin/Heidelberg, Germany: Springer International Publishing; 2019.
- Martinelli DD. Generative machine learning for de novo drug discovery: a systematic review. Comput Biol Med. 2022;145:105403.
- Lavecchia A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov Today. 2019;24(10):2017–32.
- Nichols JA, Herbert Chan HW, Baker MA. Machine learning: applications of artificial intelligence to imaging and diagnosis. Biophys Rev. 2019;11:111–8.
- Valueva MV, Nagornov NN, Lyakhov PA, Valuev GV, Chervyakov NI. Application of the residue number system to reduce hardware costs of the convolutional neural network implementation. Math Comp Simul. 2020;177:232–43.
- Askr H, Elgeldawi E, Aboul Ella H, Elshaier YA, Gomaa MM, Hassanien AE. Deep learning in drug discovery: an integrative review and future challenges. Artif Intell Rev. 2023;56(7):5975–6037.
- Chattopadhay A, Sarkar A, Howlader P, Balasubramanian VN. In: 2018 IEEE winter conference on applications of computer vision (WACV). Grad‐CAM++: Generalized Gradient‐Based Visual Explanations for Deep Convolutional Networks. 2018:839–47.
- Goh GB, Siegel C, Vishnu A, Hodas NO, Baker N. Chemception: a deep neural network with minimal chemistry knowledge matches the performance of expert-developed QSAR/QSPR models. arXiv preprint arXiv:1706.06689. 2017.
- Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015. pp. 1–9.
- Vaz JM, Balaji S. Convolutional neural networks (CNNs): concepts and applications in pharmacogenomics. Mol Divers. 2021;25(3):1569–84. doi: 10.1007/s11030-021-10225-3.
- Dhami DS, Yan S, Kunapuli G, Page D, Natarajan S. Beyond textual data: predicting drug-drug interactions from molecular structure images using siamese neural networks. arXiv preprint arXiv:1911.06356. 2019.
- Altalib MK, Salim N. Similarity-based virtual screen using enhanced Siamese multi-layer perceptron. Molecules. 2021;26(21):6669.
- Venkatesan R, Li B. Convolutional neural networks in visual computing: a concise guide. CRC Press; 2017.
- Leelananda SP, Lindert S. Computational methods in drug discovery. Beilstein J Org Chem. 2016;12(1):2694–718. doi:10.3762/bjoc.12.267
- LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44.
- Sakhamuri MR, Henna S, Creedon L, Meehan K. Graph Modelling and Graph-Attention Neural Network for Immune Response Prediction. In: 2023 34th Irish Signals and Systems Conference (ISSC). 2023. pp. 1–6). IEEE.
- Liggieri L, Miller R. Editorial overview: hot topic: COVID-19: colloid and interface aspects of COVID-19. Curr Opin Coll Interf Sci. 2021;56:101525.
- Senthilkumar V, Prabhu C. Optimization of design and development of a biomass gasifier–a review. Biofuels. 2024;1–9.
- Ly HB, Vu HLT, Ho LS, Pham BT. Dimensionality reduction and prediction of soil consolidation coefficient using random forest coupling with relief algorithm. Front Struct Civil Eng. 2022;16(2):224–38.
- Jiang H, He Y, Liao M, Jing Y, Zhang C. English-Vietnamese machine translation model based on sequence to sequence algorithm. In: 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). 2020. pp. 1086–91. IEEE.
- Devi KJ, Singh NH, Thongam K. Automatic speaker recognition from speech signals using self organizing feature map and hybrid neural network. Microprocess Microsyst. 2020;79:103264.
- Rajamanickam R, Baskaran D. Neural network model for biological waste management systems. In: Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering. Academic Press; 2022. pp. 393–415.
- Zhou Y, Zhang Y, Lian X, Li F, Wang C, Zhu F, et al. Therapeutic target database update 2022: facilitating drug discovery with enriched comparative data of targeted agents. Nucl Acid Res. 2022;50(D1):D1398–407.
- Yang Z, Zeng X, Zhao Y, Chen R. AlphaFold2 and its applications in the fields of biology and medicine. Sign Transduct Target Ther. 2023;8(1):115.
- AlQuraishi M. AlphaFold2@ CASP14:“It feels like one’s child has left home.”. Some Thoughts on a Mysterious Universe. 2020.
- Basit SA, Qureshi R, Musleh S, Guler R, Rahman MS, Biswas KH, et al. COVID-19Base v3: update of the knowledgebase for drugs and biomedical entities linked to COVID-19. Front Pub Heal. 2023;11:1125917.
- Agrawal PJ. Artificial intelligence in drug discovery and development. J Pharmacovig. 2018;6(2):1000e173.
- Kumar A, Tejaswini P, Nayak O, Kujur AD, Gupta R, Rajanand A, et al. A survey on IBM watson and its services. J Phys Conf Ser. 2022;2273(1):012022.
- Ramsundar B, Eastman P, Walters P, Pande V. Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more. O’Reilly Media, Inc.; 2019.
- Li X, Sun Y, Zhou Z, Li J, Liu S, Chen L, et al. Deep learning‐driven exploration of pyrroloquinoline quinone neuroprotective activity in Alzheimer’s disease. Adv Sci. 2024;11(18):2308970.
- Selvaraj C, Chandra I, Singh SK. Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. Mol Divers. 2021;1–21.
- Taylor L, Nitschke G. Improving deep learning with generic data augmentation. In: 2018 IEEE symposium series on computational intelligence (SSCI). 2018. pp. 1542–7. IEEE.
- Khosla C, Saini BS. Enhancing performance of deep learning models with different data augmentation techniques: A survey. In: 2020 International Conference on Intelligent Engineering and Management (ICIEM). 2020. pp. 79–85. IEEE.
- Stork C, Wagner J, Friedrich NO, de Bruyn Kops C, Šícho M, Kirchmair J. Hit dexter: a machine‐learning model for the prediction of frequent hitters. ChemMedChem. 2018;13(6):564–71.
- Ferreira LL, Andricopulo AD. ADMET modeling approaches in drug discovery. Drug Discov Today. 2019;24(5):1157–65.
- Chan HS, Shan H, Dahoun T, Vogel H, Yuan S. Advancing drug discovery via artificial intelligence. Trend Pharm Sci. 2019;40(8):592–604.
- Zhu H. Big data and artificial intelligence modeling for drug discovery. Ann Rev Pharm Toxicol. 2020;60(1):573–89.
- Brown N. In silico medicinal chemistry: computational methods to support drug design. Roy Soc Chem. 2015.
- Ciallella HL, Zhu H. Advancing computational toxicology in the big data era by artificial intelligence: data-driven and mechanism-driven modeling for chemical toxicity. Chem Res Toxicol. 2019;32(4):536–47.
- Madushanka A, Laird E, Clark C, Kraka E. SmartCADD: AI-QM empowered drug discovery platform with explainability. J Chem Inform Model. 2024;64(17):6799–813.
- Biswas A, Kumari A, Gaikwad DS, Pandey DK. Revolutionizing biological science: the synergy of genomics in health, bioinformatics, agriculture, and artificial intelligence. OMICS J Integrat Biol. 2023;27(12):550–69.
- Kose U, Gupta D, Chen X, editors. Explainable Artificial Intelligence for Biomedical Applications (1st ed.). River Publishers; 2023. https://doi.org/10.1201/9781032629353
- Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, et al. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18(6):463–77.
- Sanjeevi M, Hebbar PN, Aiswarya N, Rashmi S, Rahul CN, Mohan A, et al. Methods and applications of machine learning in structure-based drug discovery. In: Advances in Protein Molecular and Structural Biology Methods. Academic Press; 2022. pp. 405–37.
- Dornaika F, Bosaghzadeh A, Salmane H, Ruichek Y. Object categorization using adaptive graph-based semi-supervised learning. In: Handbook of Neural Computation. Academic Press; 2017. pp. 167–79.
- Nagarajan V, Mandarapu D, Kulkarni M. Rt-knns unbound: Using rt cores to accelerate unrestricted neighbor search. In: Proceedings of the 37th International Conference on Supercomputing. 2023. pp. 289–300.
- Rezaei N, Jabbari P. Practice examples. In: Immunoinformatics of Cancers. . Elsevier; 2022. pp. 223–61.
- Ozturk Kiyak E, Ghasemkhani B, Birant D. High-level k-nearest neighbors (HLKNN): a supervised machine learning model for classification analysis. Electronics. 2023;12(18):3828.
- Badillo S, Banfai B, Birzele F, Davydov II, Hutchinson L, Kam‐Thong T, et al. An introduction to machine learning. Clin Pharm Ther. 2020;107(4):871–85.
- Siddalingappa R, Kanagaraj S. K-nearest-neighbor algorithm to predict the survival time and classification of various stages of oral cancer: a machine learning approach. F1000Research. 2023;11:70.
- Mendes N, Vieira JG, Mano AP. Risk management in aviation maintenance: a systematic literature review. Saf Sci. 2022;153:105810.
- Sikelis K, Tsekouras GE, Kotis K. Ontology-based feature selection: a survey. Fut Internet. 2021;13(6):158.
- Bichindaritz I, Marling C. Case-based reasoning in the health sciences: What’s next?. Artif Intell Med. 2006;36(2):127–35.
- Wakiru JM, Pintelon L, Muchiri PN, Chemweno PK. A review on lubricant condition monitoring information analysis for maintenance decision support. Mech Syst Sign Process. 2019;118:108–32.
- Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules. 2020;25(22):5277.
- Yoon HR, Balupuri A, Choi KE, Kang NS. Small molecule inhibitors of DYRK1A identified by computational and experimental approaches. Int J Mol Sci. 2020;21(18):6826.
- Beetel RJ, Chettipally U, Dash R, Shankar S. Artificial intelligence and machine learning in clinical trial design and application. In: A Handbook of Artificial Intelligence in Drug Delivery. Academic Press; 2023. pp. 571–80.
- Harrer S, Shah P, Antony B, Hu J. Artificial intelligence for clinical trial design. Trend Pharm Sci. 2019;40(8):577–91.
- Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotech. 2014;32(1):40–51.
- Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: a review. Contemp Clin Trial Commun. 2018;11:156–64.
- Freedman DH. Hunting for new drugs with AI. Nature. 2019;576(7787):S49–53.
- Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Translat Med. 2019;11(509):eaaw8412.
- Ganesan A, Coote ML, Barakat K. Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov Today. 2017;22(2):249–69.
- Wang Y, Ribeiro JM, Tiwary P. Machine learning approaches for analyzing and enhancing molecular dynamics simulations. Curr Opin Struct Biol. 2020;61:139–45.
- Veljkovic V, Loiseau PM, Figadere B, Glisic S, Veljkovic N, Perovic VR, et al. Virtual screen for repurposing approved and experimental drugs for candidate inhibitors of EBOLA virus infection. F1000Research. 2015;4.
- Bannigan P, Aldeghi M, Bao Z, Häse F, Aspuru-Guzik A, Allen C. Machine learning directed drug formulation development. Adv Drug Deliv Rev. 2021;175:113806.
- Chen R, Liu X, Jin S, Lin J, Liu J. Machine learning for drug-target interaction prediction. Molecules. 2018;23(9):2208.
- Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nat Mach Intell. 2020;2(10):573–84.
- Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges for delivering clinical impact with artificial intelligence. BMC Med. 2019;17:1–9.
- Juwara L, El-Hussuna A, El Emam K. An evaluation of synthetic data augmentation for mitigating covariate bias in health data. Patterns. 2024;5(4).
- Pérez Santín E, Rodríguez Solana R, González García M, García Suárez MD, Blanco Díaz GD, Cima Cabal MD, et al. Toxicity prediction based on artificial intelligence: a multidisciplinary overview. Wiley Interdisc Rev Comput Mol Sci. 2021;11(5):e1516.
- Schneider P, Walters WP, Plowright AT, Sieroka N, Listgarten J, Goodnow Jr RA, et al. Rethinking drug design in the artificial intelligence era. Nat Rev Drug Discov. 2020;19(5):353–64.
