Review on Algae Biodiesel Production: A Strategy to Enhance Future

Year : 2023 | Volume : 01 | Issue : 02 | Page : 23-30
By

    Sayak Ghosh

  1. Priyadarshi Mukherjee

  1. Student, Department Of Biotechnology, Haldia Institute Of Technology, Haldia, West Bengal, India
  2. Student, Department Of Biotechnology, Haldia Institute Of Technology, Haldia, West Bengal, India

Abstract

The quest for cleaner and renewable energy sources has propelled the interest in the production of biodiesel from algae. Algae, due to their high oil content and fast growth rate, present a promising feedstock for the production of biodiesel, especially since they can be cultivated on non-arable land and with seawater or wastewater. Algae biodiesel offers the advantage of being compatible with current diesel engines without any need for modification, compared to conventional diesel fuel. The process of producing biodiesel from algae involves the extraction of lipid oils from the algae and their subsequent transformation into biodiesel via transesterification. Algae biodiesel has several benefits over traditional diesel, including lower emissions and a reduced dependence on fossil fuels. To achieve optimal algae growth, the use of nutrient-rich mediums and favourable environmental conditions, such as appropriate lighting and temperature, are crucial. Despite its potential benefits, the production of source means algae for biodiesel faces major obstacles such as the high cost of algae culture and the development of effective harvesting and extraction techniques. However, with further research and development, the production of biofuel from algae has the potential to replace fossil fuels in a sustainable and practical manner. Looking towards the future, the continued advancement of algae cultivation and extraction techniques, coupled with increasing demand for clean energy, may lead to a more widespread adoption of algae biodiesel. Moreover, the use of algae for biofuels could contribute to sustainable development by providing an alternative to non-renewable energy sources and reducing greenhouse gas emissions. The potential of producing biodiesel from algae offers a promising avenue towards a more sustainable future.

Keywords: Bio-diesels, Fossil Fuel, Algae, Sustainable future, greenhouse gas emissions

[This article belongs to International Journal of Biochemistry and Biomolecule Research(ijbbr)]

How to cite this article: Sayak Ghosh, Priyadarshi Mukherjee Review on Algae Biodiesel Production: A Strategy to Enhance Future ijbbr 2023; 01:23-30
How to cite this URL: Sayak Ghosh, Priyadarshi Mukherjee Review on Algae Biodiesel Production: A Strategy to Enhance Future ijbbr 2023 {cited 2023 Oct 09};01:23-30. Available from: https://journals.stmjournals.com/ijbbr/article=2023/view=129119

Browse Figures

References

  1. Scott, S. A.; Davey, M. P.; Dennis, J. S.; Horst, I.; Howe, C. J.; Lea-Smith, D. J.; Smith, A. G. (2010). “Biodiesel from algae: Challenges and prospects”. Current Opinion in Biotechnology. 21 (3): 277–286. doi:10.1016/j.copbio.2010.03.005. PMID 20399634.
  2.  Darzins, Al; Pienkos, Philip; Edye, Les (2010). Current status and potential for algal biofuels production (PDF). IEA Bioenergy Task 39.
  3. Westervelt, Amy (17 March 2023). “Big oil firms touted algae as climate solution. Now all have pulled funding”. The Guardian. ISSN 0261-3077. Retrieved 21 March 2023.
  4. Harder, R.; von Witsch, H. (1942). “Bericht über versuche zur fettsynthese mittels autotropher microorganismen”. Forschungsdienst Sonderheft. 16: 270–275.
  5. Harder, R.; von Witsch, H. (1942). “Die massenkultur von diatomeen”. Berichte der Deutschen Botanischen Gesellschaft. 60: 146–152.
  6.  Cook P.M. 1950. Large-scale culture of Chlorella. In: Brunel J., G.W. Prescott (eds) The culture of algae. Charles F. Kettering Foundation, Dayton, p. 53–77.
  7. Burlew J.S. (ed). 1953. Algae culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, p. 1–357.
  8. Burlew J.S. 1953. Current status of large-scale culture of algae. In: Burlew J.S. (ed). Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, p. 3–23.
  9. Gummert F., M.E. Meffert, and H. Stratmann. 1953. Nonsterile large-scale culture of Chlorella in greenhouse and open air. In: Burlew J.S. (ed). Algal culture: from laboratory to pilot plant. Carnegie Institution of Washington, Washington, DC, p. 166–176
  10. Mituya A., T. Nyunoya, and H. Tamiya. 1953. Pre-pilot-plant experiments on algal mass culture. In: Burlew J.S. (ed). Algal culture: from labo- ratory to pilot plant. Carnegie Institution, Washington, DC, p. 273–281.
  11. Geoghegan M.J. 1953. Experiments with Chlorella at Jealott’s Hill. In: Burlew J.S. (ed). Algal culture: from laboratory to pilot plant. Carnegie Institution, Washington, DC, p. 182–189.
  12. Evenari M., A.M. Mayer, and E. Gottesman. 1953. Experiments on the culture of algae in Israel. In: Burlew J.S. (ed). Algal culture. From laboratory to pilot plant. Carnegie Institution, Washington, DC, p. 197–203.
  13. Aach, H. G. (1952). “Über Wachstum und Zusammensetzung von Chlorella pyrenoidosa bei unterschiedlichen Lichtstärken und Nitratmengen”. Archiv für Mikrobiologie. 17 (1–4): 213–246. doi:10.1007/BF00410827. S2CID 7813967.
  14. Borowitzka, M. A. (2013). “Energy from Microalgae: A Short History”. Algae for Biofuels and Energy. pp. 1–15. doi:10.1007/978-94-007-5479-9_1. ISBN 978-94-007-5478-2.
  15. “National Algal Biofuels Technology Roadmap” (PDF). US Department of Energy, Office of Energy Efficiency and Renewable Energy, Biomass Program. Retrieved 3 April 2014.
  16. Sheehan J., T. Dunahay, J. Benemann, P. Roessler. 1998. A look back at the U.S. Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory: Golden, Colorado. NREL/TP-580-24190, p. 1–328
  17.  Michiki, H. (1995). “Biological CO2 fixation and utilization project”. Energy Conversion and Management. 36 (6–9): 701–705. doi:10.1016/0196-8904(95)00102-J.
  18. Negoro, M.; Shioji, N.; Miyamoto, K.; Micira, Y. (1991). “Growth of Microalgae in High CO2 Gas and Effects of SOX and NOX”. Applied Biochemistry and Biotechnology. 28–29: 877–86. doi:10.1007/BF02922657. PMID 1929389. S2CID 22607146.
  19. Negoro, M.; Shioji, N.; Ikuta, Y.; Makita, T.; Uchiumi, M. (1992). “Growth characteristics of microalgae in high-concentration co2 gas, effects of culture medium trace components, and impurities thereon”. Applied Biochemistry and Biotechnology. 34–35: 681–692. doi:10.1007/BF02920589. S2CID 96744279.
  20. Pienkos, P. T.; Darzins, A. (2009). “The promise and challenges of microalgal-derived biofuels”. Biofuels, Bioproducts and Biorefining. 3 (4): 431–440. doi:10.1002/bbb.159. S2CID 10323847.
  21. Scott D. Doughman; Srirama Krupanidhi; Carani B. Sanjeevi (2007). “Omega-3 Fatty Acids for Nutrition and Medicine: Considering Microalgae Oil as a Vegetarian Source of EPA and DHA”. Current Diabetes Reviews. 3 (3): 198–203. doi:10.2174/157339907781368968. PMID 18220672. S2CID 29591060.
  22. Arterburn, LM (July 2008). “Algal-Oil Capsules and Cooked Salmon: Nutritionally Equivalent Sources of Docosahexaenoic Acid”. Journal of the American Dietetic Association. 108 (7): 1204–1209. doi:10.1016/j.jada.2008.04.020. PMID 18589030. Retrieved 20 January 2017
  23.  Lenihan-Geels, G; Bishop, K. S.; Ferguson, L. R. (2013). “Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish?”. Nutrients. 5 (4): 1301–1315. doi:10.3390/nu5041301. PMC 3705349. PMID 23598439.
  24. “Biofuels from industrial/domestic wastewater”. Archived from the original on 18 February 2009. Retrieved 11 June 2008.
  25. Tornabene, et al. (1983), Lipid composition of nitrogen starved, green Neochloris oleoabundans
  26. Chisti, Y. (2007). “Biodiesel from microalgae”. Biotechnology Advances. 25 (3): 294–306. doi:10.1016/j.biotechadv.2007.02.001. PMID 17350212. S2CID 18234512.
  27. Banerjee, Anirban; Sharma, Rohit; Chisti, Yusuf; Banerjee, U. C. (2002). “Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals”. Critical Reviews in Biotechnology. 22 (3): 245–279. doi:10.1080/07388550290789513. PMID 12405558. S2CID 20396446.
  28. “Mechanical CO2 sequestration improves algae production – Chemical Engineering | Page 1”. March 2019.
  29. “Microalgal Production SARDI AQUATIC SCIENCES” (PDF). Government of South Australia. Archived from the original (PDF) on 17 December 2008. Retrieved 3 November 2008.
  30. Atabani, A. E.; Silitonga, A. S.; Badruddin, I. A.; Mahlia, T. M. I.; Masjuki, H. H.; Mekhilef, S. (2012). “A comprehensive review on biodiesel as an alternative energy resource and its characteristics”. Renewable and Sustainable Energy Reviews. 16 (4): 2070–2093. doi:10.1016/j.rser.2012.01.003.
  31. “Biodiesel Production from Algae” (PDF). Department of Energy Aquatic Species Program, National Renewable Energy Laboratory. Archived from the original (PDF) on 26 September 2006. Retrieved 29 August 2006
  32.  Shirvani, T.; Yan, X.; Inderwildi, O. R.; Edwards, P. P.; King, D. A. (2011). “Life cycle energy and greenhouse gas analysis for algae-derived biodiesel”. Energy & Environmental Science. 4 (10): 3773. doi:10.1039/C1EE01791H. S2CID 111077361.
  33. Potts, T.; Du, J.; Paul, M.; May, P.; Beitle, R.; Hestekin, J. (2012). “The Production of Butanol from Jamaica Bay Macro Algae”. Environmental Progress and Sustainable Energy. 31 (1): 29–36. doi:10.1002/ep.10606. S2CID 96613555.

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received September 4, 2023
Accepted September 11, 2023
Published October 9, 2023