Valeton Phytoconstituents from Curcuma Phaeocaulis as Prion Protein Mutant V210I Inhibitors: A Computational Docking and Virtual Screening Study

Year : 2023 | Volume : 01 | Issue : 02 | Page : 1-16
By

    Richa Sanyal

  1. Samiksha Bhor

  1. Student, University Institute of Biotechnology, Chandigarh University,, Punjab, India
  2. Bioinformatics Associate, Department of Biotechnology, Bionome, Benglore, Karnataka, India

Abstract

Objective: Creutzfeldt-Jakob disease (CJD), a neurological disorder that is sporadic, fatal, communicable, and worsens rapidly, is caused by abnormal folding of prion proteins. Identifying and assessing the potential of phytocompounds from the Curcuma phaeocaulis Valeton plant as a new therapeutic candidate aimed at the treatment of CJD is the objective of this research article.
Methods: In this experiment, we assessed outcomes following an in-silico assessment to design a new oral treatment for Creutzfeldt-Jakob disease. (CJD). Phytocompounds from Curcuma phaeocaulis Valeton believed to have therapeutic effects were selected, put through a comprehensive virtual screening in this study, and screened for pharmacology and toxicology. Eventually, the screening was completed by docking the selected compounds with PyRx and Biovia against the prion protein target.
Results: Germacrone, Cyclocurcumin, and demethoxycurcumin were found to be potentially effective therapeutic drugs against the target prion protein in docking analysis.
Conclusion: According to this analysis, Curcuma phaeocaulis valeton can be a beneficial therapeutic herb for further research on the treatment of Creutzfeldt-Jakob disease.
Keywords: Curcuma phaeocaulis Valeton, Creutzfeldt-Jakob disease (CJD), Prion disease, Molecular docking, ADMET, Toxicity Prediction

Keywords: Curcuma phaeocaulis valeton, creutzfeldt-jakob disease (CJD), prion disease, molecular docking, ADMET, toxicity prediction

[This article belongs to International Journal of Biochemistry and Biomolecule Research(ijbbr)]

How to cite this article: Richa Sanyal, Samiksha Bhor Valeton Phytoconstituents from Curcuma Phaeocaulis as Prion Protein Mutant V210I Inhibitors: A Computational Docking and Virtual Screening Study ijbbr 2023; 01:1-16
How to cite this URL: Richa Sanyal, Samiksha Bhor Valeton Phytoconstituents from Curcuma Phaeocaulis as Prion Protein Mutant V210I Inhibitors: A Computational Docking and Virtual Screening Study ijbbr 2023 {cited 2023 Jul 05};01:1-16. Available from: https://journals.stmjournals.com/ijbbr/article=2023/view=129108

Browse Figures

References

  1. Prion Diseases | NIH: National Institute of Allergy and Infectious Diseases. (2020, May 22). archive.org. https://web.archive.org/web/20200522095052/https://www.niaid.nih.gov/disease s-conditions/prion-diseases
  2. Prusiner B. (1998). Prions. Proceedings of the National Academy of Sciences of the United States of America, 95(23), 13363–13383. https://doi.org/10.1073/pnas.95.23.13363
  3. Shim, K. H., Sharma, N., & An, S. S. A. (2022). Prion therapeutics: Lessons from the past. Prion, 16(1), 265–294. https://doi.org/10.1080/19336896.2022.2153551
  4. Hermann, P., Appleby, B., Brandel, J. P., Caughey, B., Collins, S., Geschwind, M. D., Green, A., Haïk, S., Kovacs, G. G., Ladogana, A., Llorens, F., Mead, S., Nishida, N., Pal, S., Parchi, P., Pocchiari, M., Satoh, K., Zanusso, G., & Zerr, I. (2021). Biomarkers and diagnostic guidelines for sporadic Creutzfeldt-Jakob disease. The Lancet. Neurology, 20(3), 235–246. https://doi.org/10.1 016/S1474-4422(20)30477-4
  5. Sitammagari, K., & Masood, W. (2023). Creutzfeldt Jakob Disease. PubMed; StatPearls Publishing. https://pubmed.ncbi.nlm.nih.gov/29939637/
  6. Salehi, P., Clark, M., Pinzon, J., & Patil, A. (2022). Sporadic Creutzfeldt-Jakob disease. The American journal of emergency medicine, 52, 267.e1–267.e3. https://doi.org/10.1016/j.ajem.20 07.038
  7. Creutzfeldt-Jakob Disease Treatment. (n.d.). Ucsfhealth.org. https://www.ucsfhealth.org/conditi ons/creutzfeldt-jakob-disease/treatment
  8. Lee, , Lee, H., Kim, J., Kim, J. H., Gao, E. M., Lee, Y., Yoo, M., Trinh, T. H. T., Kim, J., Kim, C. Y., & Ryou, C. (2022). The Effect of Curcuma phaeocaulis Valeton (Zingiberaceae) Extract on Prion Propagation in Cell-Based and Animal Models. International journal of molecular sciences, 24(1), 182. https://doi.org/10.3390/ijms24010182
  9. Curcuma phaeocaulis in Flora of China @ efloras.org. (n.d.). Www.efloras.org. Retrieved April 1, 2023, from http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200028371
  10. Behzadi, P., & Gajdács, M. (2021). Worldwide Protein Data Bank (wwPDB): A virtual treasure for research in European journal of microbiology & immunology, 11(4), 77–86. https://doi.org/10.1556/1886.2021.00020
  11. Mohanraj, , Karthikeyan, B. S., Vivek-Ananth, R. P., Chand, R. P. B., Aparna, S. R., Mangalapandi, P., & Samal, A. (2018). IMPPAT: A curated database of Indian Medicinal Plants, Phytochemistry And Therapeutics. Scientific reports, 8(1), 4329. https://doi.org/10.1038/s41598- 018-22631-z
  12. Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. , Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2021). PubChem in 2021: new data content and improved web interfaces. Nucleic acids research, 49(D1), D1388–D1395. https://doi.org/10.1093/nar/gkaa971
  13. Pinzi, , & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International journal of molecular sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331
  14. PyRx Blog. (n.d.). sourceforge.io. Retrieved March 30, 2023, from https://pyrx.sourceforge.io/blog#:~:text=For%20Vina%20Wizard%2C%20on%20the
  15. Xiong, G., Wu, , Yi, J., Fu, L., Yang, Z., Hsieh, C., Yin, M., Zeng, X., Wu, C., Lu, A., Chen, X., Hou, T., & Cao, D. (2021). ADMETlab 2.0: an integrated online platform for accurate and comprehensive predictions of ADMET properties. Nucleic acids research, 49(W1), W5–W14. https://doi.org/10.1093/nar/gkab255
  16. (2021). com. https://www.peptide2.com/peptide_calc_note.htm
  17. Laskowski, R. A., Jabłońska, J., Pravda, L., Vařeková, R. S., & Thornton, J. M. (2018). PDBsum: Structural summaries of PDB entries. Protein science: a publication of the Protein Society, 27(1), 129–134. https://doi.org/10.1002/pro.3289
  18. Developing Solid Oral Dosage Forms | ScienceDirect. (n.d.). sciencedirect.com. https://www.sciencedirect.com/book/9780128024478/developing-solid-oral-dosage-forms
  19. Scientific American. (2018). What Is a Prion? Scientific American. https://www.scientificamer com/article/what-is-a-prion-specifica/
  20. Jones, E., & Mead, S. (2020). Genetic risk factors for Creutzfeldt-Jakob disease. Neurobiology of disease, 142, 104973. https://doi.org/10.1016/j.nbd.2020.104973
  21. (2019). Overview – Creutzfeldt-Jakob disease. NHS. https://www.nhs.uk/conditions/creutz feldt-jakob-disease-cjd/
  22. Ogami-Takamura, K., Saiki, K., Endo, D., Murai, K., & Tsurumoto, T. (2022). The risk of Creutzfeldt-Jakob disease infection in cadaveric surgical Anatomical science international, 97(3), 297–302. https://doi.org/10.1007/s12565-022-00662-x
  23. De Vries, K., Cousins, E., & Harrison Dening, K. (2021). Palliative care in Creutzfeldt-Jakob disease: looking back, thinking BMJ supportive & palliative care, bmjspcare-2020-002799. Advance online publication. https://doi.org/10.1136/bmjspcare-2020-002799
  24. Curcuma phaeocaulis Valeton – Encyclopedia of Life. (n.d.). Eol.org. Retrieved March 31, 2023, from https://eol.org/pages/1122299
  25. Curcuma phaeocaulis Valeton — The Plant List. (n.d.). theplantlist.org. Retrieved March 31, 2023, from http://www.theplantlist.org/tpl1.1/record/kew-235270
  26. Curcuma phaeocaulis Valeton | Plants of the World Online | Kew Science. (n.d.). Plants of the World Retrieved March 31, 2023, from https://powo.science.kew.org/taxon/ urn:lsid:ipni.org:names:872383-1
  27. Dong, , Zhao, C., Wang, X., Xie, M., Zhong, X., Song, R., Yu, A., Wei, J., Yao, J., Shan, D., Lv, F., & She, G. (2022). Lvsiyujins A–G, new sesquiterpenoids, from Curcuma phaeocaulis Valeton root tuber and their preliminary pharmacological property assessment based on ADME evaluation, molecular docking and in vitro experiments. New Journal of Chemistry, 46(18), 8507–8522. https://doi.org/10.1039/D2NJ00101B
  28. Nam, Y. J., Choi, J., Lee, J. S., Seo, C., Lee, G., Lee, Y., Kim, J. K., Kim, P., Lim, J. J., Choi, H. S., & Choi, Y. (2022). Curcuma phaeocaulis Inhibits NLRP3 Inflammasome in Macrophages and Ameliorates Nanoparticle-Induced Airway Inflammation in Mice. Molecules (Basel, Switzerland), 27(7), https://doi.org/10.3390/molecules27072101
  29. Biljan, I., Ilc, G., Giachin, G., Plavec, J., & Legname, G. (2012). Structural rearrangements at physiological pH: nuclear magnetic resonance insights from the V210I human prion protein Biochemistry, 51(38), 7465–7474. https://doi.org/10.1021/bi3009856
  30. Bank, R. P. D. (n.d.). RCSB PDB – 2LV1: Solution-state NMR structure of prion protein mutant V210I at neutral pH. rcsb.org. Retrieved March 31, 2023, from https://www.rcsb.org/structure/2lv1
  31. Yuandani, Yuandani & Jantan, Ibrahim & Rohani, Ade & Sumantri, (2021). Immunomodulatory Effects and Mechanisms of Curcuma Species and Their Bioactive Compounds: A Review. Frontiers in Pharmacology. 12. 10.3389/fphar.2021.643119.
  32. Benet, Z., Hosey, C. M., Ursu, O., & Oprea, T. I. (2016). BDDCS, the Rule of 5 and drugability. Advanced  drug    delivery    reviews,    101,    89–98.    https://doi.org/10.1016/j.addr.201 6.05.007
  33. The Role of ADME & Toxicology Studies in Drug Discovery & Development. (2020, March 10). The Connected          https://www.thermofisher.com/blog/connectedlab/the-role-of-adme- toxicology-studies-in-drug-discovery-development/#:~:text=ADME%20properties%20allow%20 drug%20developers
  34. Fu, Y., Zhao, J., & Chen, Z. (2018). Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Computational and mathematical methods in medicine, 2018, 3502514. https://doi.org/10.1155/2018/3502514
  35. Niranjan, , Rao, A., Janaki, B., Uttarkar, A., Setlur, A. S., Chandrashekar, K., & Udayakumar, M. (2021). Molecular Docking and Interaction Studies of Identified Abscisic Acid Receptors in Oryza sativa: An In-Silico Perspective on Comprehending Stress Tolerance Mechanisms. Current genomics, 22(8), 607–619. https://doi.org/10.2174/1389202923666211222161006

Regular Issue Subscription Original Research
Volume 01
Issue 02
Received May 8, 2023
Accepted June 15, 2023
Published July 5, 2023