Strategy to Accelerate the Biopharmaceuticals Production Using Komogataella phaffii (Pichia pastoris)


Year : 2024 | Volume : 02 | Issue : 02 | Page : 1-7
    By

    Prakash Vaithyanathan,

  1. Science Teacher and Innovator, LB Road, Chennai, Tamil Nadu, India

Abstract

Revenue generation has been the primary goals for nations as well as the industries worldwide. Biopharmaceutical verticals have become potential revenue generators as they are the industrial workhorses and the economic engines that drive the upcoming biopharmaceutical industries with advances in DNA recombinant technology. A breakthrough in the indusrial biotechnology for the production of biopharmaceuticals using Pichia pastoris is awaited. Ablynx NV, Recombinant proteins (RP), HSA-pFSH beta, antibodies, borosin, N-glycoprotein, antimicrobial peptides, interferon alpha-2b, human interferon (hIFN gamma), recombinant human insulin along with C-peptide, growth hormones, monoclonal antibodies (mAbs), antimicrobial peptides, clavanina, a modified MO are some of the classical examples of the biopharmaceuticals that can be produced using Pichia pastoris as the host. The ease and fast growth rates, like the bamboos in the forest, makes Pichia pastoris as a preferred choice compared to many other fungal and bacterial strains to be used as promising host. Moreover, tunability of culture medium, sustainability of the yeast strain even under nutrient starved conditions, ease of tuning of the metabolic pathways via synthetic biological schemes facilitate Pichia pastoris to yield unconventional drugs and hormones for the alleviation of suffering of mankind.

Keywords: Pichia pastoris, yeast, support, dispersion, biopharmaceuticals, acceleration, production

[This article belongs to International Journal of Advance in Molecular Engineering (ijame)]

How to cite this article:
Prakash Vaithyanathan. Strategy to Accelerate the Biopharmaceuticals Production Using Komogataella phaffii (Pichia pastoris). International Journal of Advance in Molecular Engineering. 2024; 02(02):1-7.
How to cite this URL:
Prakash Vaithyanathan. Strategy to Accelerate the Biopharmaceuticals Production Using Komogataella phaffii (Pichia pastoris). International Journal of Advance in Molecular Engineering. 2024; 02(02):1-7. Available from: https://journals.stmjournals.com/ijame/article=2024/view=179120


References

  1. de Moraes LMP, Marques HF, Reis VCB, et al. Applications of the Methylotrophic Yeast Komagataella phaffii in the Context of Modern Biotechnology. Journal of fungi. 2024; 10 (6):411.
  2. Isaacs A, Lindenmann J, Virus interference.   The interferon.  Proc R Soc Lond B Biol Sci.  1957; 147 (927): 258-67p.
  3. Reis-Claro I, Silva MI, Moutinho A, et al. Application of the iPLUS non-coding sequence in improving biopharmaceuticals production. Front Bioeng Biotechnol. 2024; 12: 1355957.
  4. De Groeve M, Laukens B, Schotte P. Optimizing expression of Nanobody (R) molecules in Pichia pastoris through co-expression of auxiliary proteins under methanol and methanol-free conditions. Microb cell fact. 2023; 22 (1): 135.
  5. De Brabander P, Uitterhaegen E, Delmulle T, et al. Challenges and progress towards industrial recombinant protein production in yeasts: A review. Adv. 2023.
  6. Xu YQ, Geng ZJ, Yang CX et al. Effect of N-acetyl-L-cysteine on Cell Phenotype and Autophagy in Pichia pastoris Expressing Human Serum Albumin and Porcine Follicle- Stimulating Hormone Fusion Protein. Molecules. 2023; 28 (7): 3041.
  7. Bolmanis E, Dubencovs K, Suleiko A, et al. Model Predictive Control-A Stand Out among Competitors for Fed-Batch Fermentation Improvement. Fermentation-Basel. 2023; 9 (2): 206.
  8. Luo G, Geng ZJ, Kuerban B, et al. Enhancement of HSA-pFSHβ production by disrupting YPS1 and supplementing N-acetyl-L-cysteine in Pichia pastoris. Microbiol. 2022.
  9. Bustos C, Quezada J, Veas R, et al. Advances in Cell Engineering of the Komagataella phaffii Platform for Recombinant Protein Production. Metabolites. 2022; 12 (4): 346.
  10. Mastropietro G, Aw R, Polizzi KM, Odell WB, Kelman Z (Editors). Recombinant protein expression: eukaryotic hosts, 2021; 660:53 (80)
  11. Madhavan A, Arun, KB, Sindhu, R (Sindhu, Krishnamoorthy J, Reshmy R, Sirohi R, Pugazhendi A, Awasthi MK, Szakacs G, Binod P, Customized yeast cell factories for : from cell engineering to process scale up. Microb cell fact., 20 (1), 2021, 124.
  12. De Wachter C, Van Landuyt L, Callewaert N, Engineering of Yeast Glycoprotein Expression, Rapp, E (Rapp, E) ; Reichl, U (Reichl, U) (Eds), Advances in glycobiotechnology, 175, 2021, 93-135.
  13. Castro LS, Lobo, GS, Pereira P, Freire MG, Neves MC, Pedro AQ. Interferon-Based : Overview on the Production, Purification, and Formulation Vaccine, 9 (4), 2021, 1-51p.
  14. Matabaro E, Kaspar H, Dahlin P , Bader, DLV, Murar CE, Staubli F, Field, CM , Bode, JW , Künzler M. Identification, heterologous production and bioactivity of lentinulin A and dendrothelin A, two natural variants of backbone N-methylated peptide Macrocycle omphalotin A, Res., 11 (1), 2021, 3541.
  15. Wang, SJ , Rong, YH , Wang, YG, Kong, DC , Wang, PG , Chen, M . Homogeneous production and characterization of recombinant N-GlcNAc-protein in Pichia pastoris. Microb Cell Fact. 19 (1), 2020, 7.
  16. Radoman, B, Grünwald-Gruber, C , Schmelzer, B , Zavec, D, Gasser, B , Altmann, F, Mattanovich, D. The Degree and Length ofO-Glycosylation of Recombinant Proteins Produced in Depends on the Nature of the Protein and the Process Type, Biotechnology journal, 2021, 2000266.
  17. de Oliveira, KBS, Leite, ML, Rodrigues, GR, Duque, HM, da Costa, RA, Cunha, VA, Costa, LSD, da Cunha, NB, Franco, OL, Dias, SC. Strategies for recombinant production of antimicrobial peptides with pharmacological potential,13 (4), 2020, 367-390.
  18. Vecchiarello, N, Timmick, SM, Goodwine, C, Crowell, LE, Love, KR, Love, JC, Cramer, SM. A combined screening and in silico strategy for the rapid design of integrated downstream processes for process and product-related impurity removal Bioeng., Expt Rev Clin Pharmacol, 116 (9), 2019, 2178-2190.
  19. Crowell, LE, Lu, AE, Love, KR, tockdale, A, Timmick, SM, Wu, D, Wang, Y, Doherty, W, Bonnyman, A, Vecchiarello, N, Goodwine, C, Bradbury, L, Brady, JR, Clark, JJ, Colant, NA, Cvetkovic, A, Dalvie, NC, Liu, DN, Liu, YJ, Mascarenhas, CA, Matthews, CB, Mozdzierz, NJ, Shah, KA, Wu, SL, Hancock, WS, Braatz, RD, Cramer, SM, Love, JC. On-demand manufacturing of clinical-quality, Nat Biotechnol. 36 (10), 2018, 988.
  20. Razaghi, A, Tan, E, Lua, LHL, Owens, L, Karthikeyan, OP, Heimann, K. Is a realistic platform for industrial production of recombinant human interferon gamma? Biologicals, 45, 2017, 52-60.
  21. Baeshen, MN, Bouback, TAF, Alzubaidi, MA, Bora, RS, Alotaibi, MAT, Alabbas, OTO, Alshahrani, SM, Aljohani, AAM, Munshi, RAA, Al-Hejin, A, Ahmed, MMM, Redwan, EM, Ramadan, HAI, Saini, KS, Baeshen, NA. Expression and Purification of C-Peptide Containing Insulin Using Expression System, 2016, 3423685
  22. Jozala, AF, Geraldes, DC, Tundisi, LL, Feitosa, VD, Breyer, CA, Cardoso, SL , Mazzola, PG, de Oliveira-Nascimento, L, Rangel-Yagui, CD, Magalhaes, PD. Biopharmaceuticals from microorganisms: from production to purification, Braz J Microbil. 47, 2016, 51-63.
  23. Klymenko, OV, Shah, N, Kontoravdi, C, Royle, KE, Polizzi, KM, Designing an Artificial Golgi Reactor to Achieve Targeted Glycosylation of Monoclonal Antibodies, AIChE J., 62, 2016, 2959-2973.
  24. Mulder, KC, de Lima, LA, Aguiar, PS, Carneiro, FC, Franco, OL, Dias, SC, Parachin, NS. Production of a modified peptide clavanin in : cloning, expression, purification and in vitro activities, AMB EXPRESS, 5 , 2015, 46.
  25. Fernández, E , Toledo, JR , Mansur, M, Sánchez, O, Gil, DF, González-González, Y, Lamazares, E, Fernández, Y, Parra, F , Farnós, O. Secretion and assembly of calicivirus-like particles in high-cell-density yeast fermentations: strategies based on a recombinant non-specific BPTI-Kunitz-type protease inhibitor, Appl Microbiol Biotechnol, 99 (9), 2015, 3875-3886.
  26. Laukens, B, De Visscher, C, Callewaert, N. Engineering yeast for producing human glycoproteins: where are we now? Future microbial., 10 (1), 2015, 21-34.
  27. Rakshana M, Mala M, Manikandan G, Vaithyanathan V. Butrin to tackle retinoblastoma – A clinical hypothesis . IJAME. 2024 2(1): 26-30p.
  28. Manikandan R, Mala M, Manikandan G, Vaithyanathan P. Isocoreopsin and glycogen phosphorylase – An in-silico interaction study A new way to tackle type 2 diabetes (T2D). IJEC, 2024, 2(1), 1-8p.
  29. Manikandan R, Mala M, Manikandan G, Vaithyanathan P. Isobutrin and phosphorylase kinase – An Insilico study A ray of hope for psoriasis patients – Clinical Hypothesis, International journal of cheminformatics. 2024 (in press)
  30. Irfan N, Vaithyanathan P, Anandaram H, et al. Active and Allosteric Site Binding molecular mechanics-quantum mechanics studies of stevioside Derivative in PCSK9 Protein Intended to provide a safe Antilipidemic agent. bioRxiv preprint doi: https://doi.org/10.1101/2023.05.04.53922110.
  31. Vaithyanathan, P. Analysis of an Insilico Interaction by a Curcumin Derivative Specially only with the akt1 molecule but not AKT2. DOI: https://doi.org/10.21203/rs.3.rs-3156936/v1. Preprint. 2023.
  32. Vaithyanathan, P. Insilco analysis of an interaction between an endogenous peptide fragment of NUR77 receptorrom human cells and USAG1 protein – may induce teeth regeneration. DOI: https://doi.org/10.21203/rs.3.rs-4193367/v1. Preprint. 2024.
  33. Manfrao-Netto, JHC, Gomes, AMV , Parachin, NS, Advances in Using Hansenula polymorpha as Chassis for Recombinant Protein Production, Front Bioeng Biotechnol, 7, 2019, 94.
  34. Matthews, CB, Kuo, A, Love, KR, Love, JC. Development of a general defined medium for Pichia pastoris, Biotechnol Bioeng., 115 (1), 2018103-113,
  35. Walker, RSK, Pretorius, IS. Applications of Yeast Synthetic Biology Geared towards the Production of biopharmaceuticals Genes (Basel). 9 (7), 2018, 340.
  36. Kang, Z, Huang, H, Zhang, YF, Du, GC, Chen, J. Recent advances of molecular toolbox construction expand in synthetic biology applications, Wold J Microbiol Biotechnolo., 33 (1), 2017, 19.
  37. Wang, YA, Wu, D, Auclair, JR, Salisbury, JP, Sarin, R, Tang, Y, Mozdzierz, NJ, Shah, K , Zhang, AF, Wu, SL, Agar, JN, Love, JC, Love, KR Hancock, WS. Integrated Bottom-Up and Top-Down Liquid Chromatography-Mass Spectrometry for Characterization of Recombinant Human Growth Hormone Degradation Products. Analytical chemistry, 89 (23) 2017, 12771-12777.
  38. Juarez, M, La Rosa, CHGD, Memun, E, Sigala, JC, Lara, AR. Aerobic expression of Vitreoscilla hemoglobin improves the growth performance of CHO-K1 cells, Biotechnol J., 12 (3), 2017, 1600438.
  39. Abe, H, Tomimoto, K, Fujita, Y, Iwaki, T, Chiba, Y, Nakayama, K, Nakajima, Y. Development of N- and O-linked oligosaccharide engineered Saccharomyces cerevisiae strain, Glycobiology, 26 (11), 2016, 1248-1256.
  40. Landowski, CP, Mustalahti, E, Wahl, R, Croute, L, Sivasiddarthan, D (Sivasi, Westerholm-Parvinen, A, Sommer, B, Ostermeier, C, Helk, B, Saarinen, J, Saloheimo, M. Enabling low cost : high level interferon alpha-2b production in Trichoderma reesei, Microb cell fact., 15, 2016, 204.
  41. Kim, H, Yoo, SJ, Kang, HA, Yeast synthetic biology for the production of recombinant therapeutic proteins, FEMS yeast res., 15 (1), 2015.
  42. Looser, V, Bruhlmann, B, Bumbak, F , Stenger, C, Costa, M, Camattari, A, Fotiadis, D, Kovar, K. Cultivation strategies to enhance productivity of Pichia pastoris: A review, Biotechnol Adv., 33 (6), 2015, 1177-1193.
  43. Pancholi S, Naghera P, Shah M, et al. Nanoyeast supported on silica gel for the continuous flow bioethanol production. IJAME. 2024, 1-7.
  44. Tabah B, Pulidindi IN, Chitturi VR, Arava LMR, Gedanken A (2015) Solar energy driven simultaneous saccharification and fermentation (SSF) of starch to bioethanol for fuel cell applications, ChemSusChem, 8, 3497–3503.
  45. Tabah B, Pulidindi IN, Chitturi VR, Arava LMR, Gedanken A (2016) Utilization of solar energy for continuous production of bioethanol for energy applications, RSC Adv., 6, 24203-24209.
  46. Tabah B, Varvak A, Pulidindi IN, Foran E, Banin B, Gedanken A (2016) Production of 1,3-propanediol from glycerol via fermentation by Saccharomyces cerevisiae, Green Chemistry, 18, 4657-4659.
  47. Betina T, Pulidindi IN, Chitturi VR, Arava LMR, Varvak A, Foran E, Banin E, Gedanken A (2017) Solar-energy-driven conversion of biomass to bioethanol: a sustainable approach, J Mat Chem A. 5, 15486-15506.
  48. Liu, X., Dong, X., Wang, H., Wu, M., and Huang, Y. (2023). “Transparent nanopaper from nanofibrillated bamboo pulp,” BioResources 18(2), 3995-4005.
  49. Jiahui Su , Yadong Yang, Caichao Wan, Xingong Li, Yaling Chai, Huayun Chai, Jianzhong Yuan, Yiqiang Wu, A Novel Flame-Retardant, Smoke-Suppressing, and Superhydrophobic Transparent Bamboo, Research – A science partner journal, 2024;7:Article 0317.
  50. Tzhayik O, Pulidindi IN, Gedanken A. Forming nano spherical cellulose containers, Ind Eng Chem Res, 53, 2014, 13871-13880.
  51. Roohvand, F, Shokri, M, Abdollahpour-Alitappeh, M, Ehsani, P. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines, 27 (8), 2017, 929-951.
  52. Love, KR, Shah, KA, Whittaker, CA, Wu, J, Bartlett, MC, Ma, DD, Leeson, RL, Priest, M, Borowsky, J, Young, SK, Love, JC. Comparative genomics and transcriptomics of pichia pastoris. 17, 2016, 550
  53. Bill, RM. Playing catch-up with Escherichia coli: using yeast to increase success rates in recombinant protein production experiments, Frontiers in microbiology, 5, 2014, 85.

Regular Issue Subscription Review Article
Volume 02
Issue 02
Received 09/09/2024
Accepted 21/10/2024
Published 22/10/2024

Views: 0