Advancing Cancer Vaccine Development through CRISPR/Cas9 Technologies and Future Opportunities

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 02 | 02 | Page :
    By

    Mohammad Nadeem Khan,

  1. Senior Clinical Research Manager, Department of Pharmacology (Clinical Pharmacology), SAMC&PGI, Sri Aurobindo University, Indore, India

Abstract

The advent of CRISPR/Cas9 genome editing has revolutionized the cancer immunotherapy market, offering unprecedented precision and versatility in the development of next-generation cancer vaccines. This review examines how CRISPR technologies are being integrated into various stages of cancer vaccine development including neoantigen discovery, dendritic cell engineering, cancer cell reprogramming, and tumor microenvironment modulation. In the area of neoantigen discovery, CRISPR enables rapid identification and validation of tumor-specific mutations, thereby supporting the design of highly personalized vaccines. Engineered dendritic cells, generated through CRISPR-based modifications, demonstrate improved antigen presentation and enhanced activation of T-cell responses. Similarly, reprogramming of cancer cells using targeted gene editing facilitates the development of whole-cell vaccines with increased immunogenicity. Beyond individual cell manipulation, CRISPR also provides opportunities to reshape the tumor microenvironment by knocking out immunosuppressive pathways or introducing immune-stimulatory factors, thereby improving vaccine potency. Newer CRISPR systems, including Cas12 and Cas13, along with advanced strategies such as CRISPRa/i and multiplex gene editing, broaden the scope of cancer vaccine design, offering refined control over gene expression and multi-targeted approaches. The choice of delivery platforms including lipid nanoparticles, viral vectors, electroporation, and exosome-based carriers further influences clinical applicability. Importantly, several ongoing clinical trials are already testing CRISPR- based cancer immunotherapies, underscoring the translational potential of these technologies. Despite promising results, challenges remain, including off-target effects, immunogenicity, ethical issues, and regulatory barriers. Finally, we present future directions, including CRISPR- guided nanotumors and AI-driven neoantigen prioritization, which together highlight the importance of CRISPR.

Keywords: CRISPR/Cas9, Cancer vaccines, Neoantigen discovery, Tumor microenvironment, Precision oncology, Gene delivery systems

How to cite this article:
Mohammad Nadeem Khan. Advancing Cancer Vaccine Development through CRISPR/Cas9 Technologies and Future Opportunities. International Journal of Vaccines. 2025; 02(02):-.
How to cite this URL:
Mohammad Nadeem Khan. Advancing Cancer Vaccine Development through CRISPR/Cas9 Technologies and Future Opportunities. International Journal of Vaccines. 2025; 02(02):-. Available from: https://journals.stmjournals.com/ijv/article=2025/view=224852


References

1. Melief CJ, van Hall T, Arens R, Ossendorp F, van der Burg SH. Therapeutic
cancer vaccines. The Journal of Clinical Investigation. 2015 Sep 1;125(9):3401-
12.
2. Burns KH. Transposable elements in cancer. Nature Reviews Cancer. 2017
Jul;17(7):415-24.
3. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A
programmable dual-RNA–guided DNA endonuclease in adaptive bacterial
immunity. Science. 2012 Aug 17;337(6096):816-21.
doi:10.1126/science.1225829
4. Doudna JA, Charpentier E. The new frontier of genome engineering with
CRISPR-Cas9. Science. 2014;346(6213):1258096. doi:10.1126/science.1258096
5. Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB, Miller BC, et al. In
vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.
Nature. 2017;547(7664):413–8. doi:10.1038/nature23270
6. Zhang Y, Zhang Z. The history and advances in cancer immunotherapy:
understanding the characteristics of tumor-infiltrating immune cells and their
therapeutic implications. Cell Mol Immunol. 2020;17(8):807–21.
doi:10.1038/s41423-020-0488-6
7. Rupp LJ, Schumann K, Roybal KT, Gate RE, Ye CJ, Lim WA, et al.
CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human
chimeric antigen receptor T cells. Sci Rep. 2017;7:737. doi:10.1038/s41598-017-
00462-8
8. Liu C, Zhang L, Liu H, Cheng K. Delivery strategies of the CRISPR-Cas9 gene-
editing system for therapeutic applications. J Control Release. 2022;341:1–15.
doi:10.1016/j.jconrel.2021.11.034
9. Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al.
Search-and-replace genome editing without double-strand breaks or donor DNA.
Nature. 2019;576(7785):149–57. doi:10.1038/s41586-019-1711-4
10. Ceccaldi R, Rondinelli B, D’Andrea AD. Repair pathway choices and
consequences at the double-strand break. Trends Cell Biol. 2016;26(1):52–64.
doi:10.1016/j.tcb.2015.07.009
11. Su S, Zou Z, Chen F, et al. CRISPR-Cas9 mediated efficient PD-1 disruption on
human primary T cells from cancer patients. Sci Rep. 2016;6:20070.
doi:10.1038/srep20070
12. Peng D, Kryczek I, Nagarsheth N, et al. Epigenetic silencing of TH1-type
chemokines shapes tumour immunity and immunotherapy. Nature.
2015;527(7577):249–53. doi:10.1038/nature15520

13. Tran E, Robbins PF, Rosenberg SA. ‘Final common pathway’ of human cancer
immunotherapy: targeting random somatic mutations. Nat Immunol.
2017;18(3):255–62. doi:10.1038/ni.3682
14. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-
mediated gene knockout in primary T cells. J Exp Med. 2018;215(3):985–97.
doi:10.1084/jem.20171626
15. Gilbert LA, Larson MH, Morsut L, et al. CRISPR-mediated modular RNA-guided
regulation of transcription in eukaryotes. Cell. 2013;154(2):442–51.
doi:10.1016/j.cell.2013.06.044
16. Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided
endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71.
doi:10.1016/j.cell.2015.09.038
17. Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al.
Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to
checkpoint inhibition. Cell. 2021;184(3):596–614.e14.
doi:10.1016/j.cell.2020.12.032
18. Yuan Y, Wang H, Wang Y, Huang L, Wu X, Zhou Y, et al. CRISPR-Cas9 screen
identifies PTPN2 as a key regulator of antigen presentation and tumor immunity
in lung cancer. J Exp Med. 2023;220(2):e20221135. doi:10.1084/jem.20221135
19. Liu Q, Cheng K, Liao Y, Chen Y, Zhao M, Lu Y, et al. DeepHLApan and
personalized neoantigen discovery using CRISPR-based tumor models. Brief
Bioinform. 2024;25(1):bbae039. doi:10.1093/bib/bbae039
20. Rodrigues PF, Alberti-Servera L, Eremin A, Grajales-Reyes GE, Ivanek R,
Tussiwand R. Distinct progenitor lineages contribute to the heterogeneity of
plasmacytoid dendritic cells. Nat Immunol. 2021;22(5):620–35.
doi:10.1038/s41590-021-00901-0
21. Joosse ME, Topham DJ. The role of dendritic cells in shaping adaptive immunity
and tolerogenic responses. Front Immunol. 2022;13:833982.
doi:10.3389/fimmu.2022.833982
22. Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. Programmable editing of a
target base in genomic DNA without double-stranded DNA cleavage. Nature.
2016;533(7603):420–24. doi:10.1038/nature17946
23. Gao Y, Zhang C, Zhou Y, Shen Y, Du Y, Wu Y, et al. Tumor cell-intrinsic PD-L1
promotes tumor-initiating cell generation and functions in melanoma and breast
cancer. Cell Rep. 2022;38(2):110249. doi:10.1016/j.celrep.2022.110249
24. Chen Y, Zhang Y, Zhang Y, Wang Y, Ding M, Li L, et al. Engineering tumor
cell-based vaccines with CRISPR-mediated cytokine release for enhanced
immunogenicity. Adv Sci (Weinh). 2023;10(12):2207024.
doi:10.1002/advs.202207024

25. Wang H, Mooney DJ. Biomaterial-assisted targeted modulation of immune cells
in cancer immunotherapy. Nat Mater. 2023;22(4):491–503. doi:10.1038/s41563-
022-01378-y
26. Zhang Y, Chen J, Zhou F, Zhang C, Wang X, Zhang Y, et al. CRISPR-mediated
knockdown of VEGFA and IL-6 enhances antitumor immunity by remodeling the
tumor microenvironment. Cancer Res. 2022;82(10):1854–66. doi:10.1158/0008-
5472.CAN-21-3966
27. Kumari N, Dwarakanath BS, Das A, Bhatt AN. Role of interleukin-6 in cancer
progression and therapeutic resistance. Tumour Biol.
2021;43(1):10104283211041229. doi:10.1177/10104283211041229
28. Deng L, Ren J, Liu L, Liu Q, Wang D, Zhang Y, et al. Dual CRISPR-mediated
knockout of PD-L1 and activation of STING enhances immunogenicity of cold
tumors. Nat Commun. 2024;15:4711. doi:10.1038/s41467-024-34711-9
29. Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor
interferon signaling regulates a multigenic resistance program to immune
checkpoint blockade. Cell. 2016;167(6):1540–54.e12.
doi:10.1016/j.cell.2016.11.022
30. Konermann S, Brigham MD, Trevino AE, Joung J, Abudayyeh OO, Barcena C, et
al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9
complex. Nature. 2015;517(7536):583–88. doi:10.1038/nature14136
31. Bowling S, Sritharan D, Osorio FG, Nguyen M, Cheung P, Rodriguez-Fraticelli
AE, et al. An engineered CRISPR-Cas9 mouse line for simultaneous readout of
lineage histories and gene expression profiles in single cells. Cell.
2020;181(2):325–40.e24. doi:10.1016/j.cell.2020.02.043
32. Han X, Liu Z, Jo MC, Zhang K, Li Y, Zeng Z, et al. CRISPR-Cas9 delivery
mediated with synthetic hybrid lipid nanoparticles for cancer immunotherapy.
Adv Mater. 2019;31(52):e1902952. doi:10.1002/adma.201902952
33. Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH. Transposon-encoded
CRISPR–Cas systems direct RNA-guided DNA integration. Nature.
2019;571(7764):219–25. doi:10.1038/s41586-019-1323-z
34. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines—a new era in
vaccinology. Nat Rev Drug Discov. 2018;17(4):261–79.
doi:10.1038/nrd.2017.243
35. Zhao X, Yang K, Zhao R, Ji T, Wang X, Yang X, et al. Inducing enhanced
immunogenic tumor cell death with nanocarrier-mediated codelivery of epigenetic
drugs and TLR agonists. Biomaterials. 2020;232:119681.
doi:10.1016/j.biomaterials.2019.119681
36. Wang H, Zhang X, Zuo Y, Wang J, Li L, Yu T, et al. Co-delivery of mRNA
vaccine and CRISPR/Cas9 system using lipid nanoparticles for cancer

immunotherapy. Biomaterials. 2023;295:121999.
doi:10.1016/j.biomaterials.2022.121999
37. Li C, Liu H, Sun Y, Wang J, Yang J, Zheng S, et al. A CRISPR-based STING
pathway booster enhances mRNA vaccine-induced immunity against cold tumors.
Nat Biomed Eng. 2024;8(1):112–25. doi:10.1038/s41551-023-01131-2
38. Abbasi J. Programmable mRNA translation for future vaccines. JAMA.
2023;329(22):1892. doi:10.1001/jama.2023.6963
39. Liu X, Tang X, Li H, Li R, Fan H, Lu J, et al. Artificial intelligence-augmented
CRISPR design streamlines personalized neoantigen vaccine development. Nat
Commun. 2023;14(1):2921. doi:10.1038/s41467-023-38685-3
40. Hou X, Zaks T, Langer R, Dong Y. Lipid nanoparticles for mRNA delivery. Nat
Rev Mater. 2021;6(12):1078–94. doi:10.1038/s41578-021-00358-0
41. Kulkarni JA, et al. The current landscape of nucleic acid delivery via lipid
nanoparticles. Nat Nanotechnol. 2021;16(6):630–43.
42. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene
therapy delivery. Nat Rev Drug Discov. 2019;18(5):358–75.
43. Milone MC, O’Doherty U. Clinical use of lentiviral vectors. Leukemia.
2018;32(7):1529–46.
44. Stadtmauer EA, et al. CRISPR-engineered T cells in patients with refractory
cancer. Science. 2020;367(6481):eaba7365.
45. Wang P, et al. Gold nanoparticle-based gene therapy: recent advances and future
prospects. ACS Appl Bio Mater. 2018;1(4):561–75.
46. Kamerkar S, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS
in pancreatic cancer. Nature. 2017;546(7659):498–503.


Ahead of Print Subscription Review Article
Volume 02
02
Received 14/08/2025
Accepted 21/08/2025
Published 25/08/2025
Publication Time 11 Days


Login


My IP

PlumX Metrics