This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Md. Emran Hossain,
- Professor, Department of Animal Science and Nutrition, Chattogram Veterinary and Animal Sciences University, Khulshi, Chattogram, Bangladesh
Abstract
Climate change has emerged as a significant challenge to dairy production, with profound implications for reproductive performance in dairy cows. The interplay of rising temperatures, fluctuating rainfall patterns, and increased frequency of extreme weather events disrupts key physiological, nutritional, and behavioral processes essential for fertility. Heat stress alters hormonal balance, impairs oocyte and embryo quality, reduces estrus expression, and affects pregnancy outcomes. Concurrently, climate-induced nutritional deficits, immune suppression, and increased prevalence of reproductive diseases exacerbate fertility challenges. This review explores the multifactorial pathways through which climate change impacts fertility in dairy cows, emphasizing physiological mechanisms, environmental stressors, and genetic predispositions. Mitigation strategies such as improved cooling systems, optimized nutrition, genetic selection for heat tolerance, and sustainable reproductive management practices are critically discussed. By integrating current knowledge and identifying research gaps, this review provides actionable insights for safeguarding reproductive efficiency and ensuring sustainable dairy production in the face of climatic adversity.
Keywords: Climate Change, Fertility, Nutritional Deficits, Heat Stress, Reproductive Performance
Md. Emran Hossain. Climate-Induced Infertility in Dairy Cows: Pathways, Challenges, and Solutions for Sustainable Dairy Development. International Journal of Climate Conditions. 2025; 02(02):-.
Md. Emran Hossain. Climate-Induced Infertility in Dairy Cows: Pathways, Challenges, and Solutions for Sustainable Dairy Development. International Journal of Climate Conditions. 2025; 02(02):-. Available from: https://journals.stmjournals.com/ijcc/article=2025/view=216053
References
1. U. Mirza, U. Bin Farooq, and S. Anjum, “Impact of Climate Change on Animal Fertility,” Clim. Chang. Its Impact …, pp. 226–240, 2021, doi: 10.4018/978-1-7998-4480-8.ch011.
2. R. MYLOSTYVYI and O. IZHBOLDINA, “Problems of livestock reproduction with a focus on climate change,” Multidiscip. Rev., vol. 4, no. 1, p. e2021011, 2021, doi: 10.29327/multi.2021011.
3. E. C. C. Celeghini, F. Baatsch-Nascimento, A. da R. Bozzi, L. N. Garcia-Oliveros, and R. P. Arruda, “Bovine testicular heat stress: From climate change to effects on microRNA profile,” Anim. Reprod. Sci., vol. 270, 2024, doi: 10.1016/j.anireprosci.2024.107620.
4. R. Jegasothy, P. Sengupta, S. Dutta, and R. Jeganathan, “Climate change and declining fertility rate in Malaysia: The possible connexions,” 2021, degruyter.com. doi: 10.1515/jbcpp-2020-0236.
5. G. Casey, S. Shayegh, J. Moreno-Cruz, M. Bunzl, O. Galor, and K. Caldeira, “The impact of climate change on fertility,” Environ. Res. Lett., vol. 14, no. 5, 2019, doi: 10.1088/1748-9326/ab0843.
6. K. Wegner, C. Lambertz, G. Daş, G. Reiner, and M. Gauly, “Climatic effects on sow fertility and piglet survival under influence of a moderate climate,” Animal, vol. 8, no. 9, pp. 1526–1533, 2014, doi: 10.1017/S1751731114001219.
7. García-Ispierto et al., “Climate factors affecting conception rate of high producing dairy cows in northeastern Spain,” Theriogenology, vol. 67, no. 8, pp. 1379–1385, 2007, doi: 10.1016/j.theriogenology.2007.02.009.
8. Y. M. Al-Katanani, D. W. Webb, and P. J. Hansen, “Factors affecting seasonal variation in 90-day nonreturn rate to first service in lactating Holstein cows in a hot climate,” J. Dairy Sci., vol. 82, no. 12, pp. 2611–2616, 1999, doi: 10.3168/jds.S0022-0302(99)75516-5.
9. F. C. Gwazdauskas, “Effects of Climate on Reproduction in Cattle,” J. Dairy Sci., vol. 68, no. 6, pp. 1568–1578, 1985, doi: 10.3168/jds.S0022-0302(85)80995-4.
10. B. U. Wakayo, P. S. Brar, and S. Prabhakar, “Review on mechanisms of dairy summer infertility and implications for hormonal intervention,” Open Vet. J., vol. 5, no. 1, pp. 6–10, 2015, doi: 10.5455/ovj.2015.v5.i1.p6.
11. U. Bernabucci, N. Lacetera, L. H. Baumgard, R. P. Rhoads, B. Ronchi, and A. Nardone, “Metabolic and hormonal adaptations to heat stress in ruminants,” Rumin. Physiol. Dig. Metab. Eff. Nutr. Reprod. Welf., p. 57, 2023.
12. M. C. Lucy, S. McDougall, and D. P. Nation, “The use of hormonal treatments to improve the reproductive performance of lactating dairy cows in feedlot or pasture-based management systems,” Anim. Reprod. Sci., vol. 82–83, pp. 495–512, 2004, doi: 10.1016/j.anireprosci.2004.05.004.
13. M. Mellado et al., “Effect of lactation number, year, and season of initiation of lactation on milk yield of cows hormonally induced into lactation and treated with recombinant bovine somatotropin,” J. Dairy Sci., vol. 94, no. 9, pp. 4524–4530, 2011, doi: 10.3168/jds.2011-4152.
14. Sammad et al., “Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities,” Animals, vol. 10, no. 5, p. 793, 2020, doi: 10.3390/ani10050793.
15. M. Roths et al., “Effects of heat stress on markers of skeletal muscle proteolysis in dairy cattle,” 2023, Elsevier. doi: 10.3168/jds.2022-22678.
16. R. Jasrotiaa, M. Dhar, and S. Langer, “Climate Change Impacts on Animal Production,” Glob. Agric. Prod. Resil. to Clim. Chang., pp. 311–333, 2023, doi: 10.1007/978-3-031-14973-3_11.
17. M. Gauly et al., “Future consequences and challenges for dairy cow production systems arising from climate change in Central Europe – A review,” Animal, vol. 7, no. 5, pp. 843–859, 2013, doi: 10.1017/S1751731112002352.
18. L. H. Baumgard et al., “Impact of climate change on livestock production,” Environ. Stress Amelior. Livest. Prod., vol. 9783642292057, pp. 413–468, 2012, doi: 10.1007/978-3-642-29205-7_15.
19. F. De Rensis, F. Lopez-Gatius, I. García-Ispierto, G. Morini, and R. J. Scaramuzzi, “Causes of declining fertility in dairy cows during the warm season,” Theriogenology, vol. 91, pp. 145–153, 2017, doi: 10.1016/j.theriogenology.2016.12.024.
20. Amin Sheikh et al., “Effect of climate change on reproduction and milk production performance of livestock: A review,” 2017, researchgate.net. [Online]. Available: https://www.phytojournal.com/archives/2017.v6.i6.2331/effect-of-climate-change-on-reproduction-and-milk-production-performance-of-livestock-a-review
21. M. R. Jainudeen and E. S. E. Hafez, “Reproductive Failure in Females,” Reprod. Farm Anim., pp. 259–278, 2000, doi: 10.1002/9781119265306.ch17.
22. Sammad, S. Umer, R. Shi, H. Zhu, X. Zhao, and Y. Wang, “Dairy cow reproduction under the influence of heat stress,” J. Anim. Physiol. Anim. Nutr. (Berl)., vol. 104, no. 4, pp. 978–986, 2020, doi: 10.1111/jpn.13257.
23. M. Tariq, S. Saeed, K. K. A. Saint Victor, A. Fatima, and D. Mao, “Heat Stress and Its Impact on Corpus Luteum (CL) Function and Reproductive Efficiency in Mammals: A Critical Review,” Reprod. Sci., 2025, doi: 10.1007/s43032-025-01787-w.
24. F. M. Hannan et al., “Endocrine effects of heat exposure and relevance to climate change,” Nat. Rev. Endocrinol., 2024, doi: 10.1038/s41574-024-01017-4.
25. T. Penev et al., “Influence of heat stress on reproductive performance in dairy cows and opportunities to reduce its effects – a review,” 2021, researchgate.net. doi: 10.15547/ast.2021.01.001.
26. M. Wrzecińska, E. Czerniawska-Piątkowska, and A. Kowalczyk, “The impact of stress and selected environmental factors on cows’ reproduction,” J. Appl. Anim. Res., vol. 49, no. 1, pp. 318–323, 2021, doi: 10.1080/09712119.2021.1960842.
27. C. C. Pérez-Marín and L. A. Quintela, “Current Insights in the Repeat Breeder Cow Syndrome,” 2023, mdpi.com. doi: 10.3390/ani13132187.
28. S. FE, B. EK, O. D, and A. JO, “Oxidative stress and its effects on reproductive performance in thermally-stressed ewes,” 2021, academia.edu. doi: 10.22271/veterinary.2021.v6.i4a.361.
29. J. K. Bhardwaj, A. Paliwal, and P. Saraf, “Effects of heavy metals on reproduction owing to infertility,” J. Biochem. Mol. Toxicol., vol. 35, no. 8, 2021, doi: 10.1002/jbt.22823.
30. Ahmad Para et al., “Impact of heat stress on the reproduction of farm animals and strategies to ameliorate it,” Biol. Rhythm Res., vol. 51, no. 4, pp. 616–632, 2020, doi: 10.1080/09291016.2018.1548870.
31. S. J. Wilson, R. S. Marion, J. N. Spain, D. E. Spiers, D. H. Keisler, and M. C. Lucy, “Effects of Controlled Heat Stress on Ovarian Function of Dairy Cattle. 1. Lactating Cows,” J. Dairy Sci., vol. 81, no. 8, pp. 2124–2131, 1998, doi: 10.3168/jds.S0022-0302(98)75788-1.
32. J. E. P. Santos, R. S. Bisinotto, and E. S. Ribeiro, “Mechanisms underlying reduced fertility in anovular dairy cows,” Theriogenology, vol. 86, no. 1, pp. 254–262, 2016, doi: 10.1016/j.theriogenology.2016.04.038.
33. P. J. Hansen and C. F. Aréchiga, “Strategies for managing reproduction in the heat-stressed dairy cow.,” J. Anim. Sci., vol. 77 Suppl 2, pp. 36–50, 1999, doi: 10.2527/1997.77suppl_236x.
34. V. S. Suthar, O. Burfeind, J. S. Patel, A. J. Dhami, and W. Heuwieser, “Body temperature around induced estrus in dairy cows,” 2011, Elsevier. doi: 10.3168/jds.2010-3858.
35. N. Llamas-Luceño, M. Hostens, E. Mullaart, M. Broekhuijse, P. Lonergan, and A. Van Soom, “High temperature-humidity index compromises sperm quality and fertility of Holstein bulls in temperate climates,” 2020, Elsevier. doi: 10.3168/jds.2019-18089.
36. P. S. Baruselli, B. L. C. Catussi, and L. Â. de Abreu, “Use of Reproductive Biotechnologies To Improve the Fertility of Repeat-Breeder and Heat-Stressed Dairy Cows,” Spermova, vol. 12, no. 1, pp. 112–117, 2022, doi: 10.18548/aspe/0010.16.
37. P. S. Baruselli, R. M. Ferreira, L. M. Vieira, A. H. Souza, G. A. Bó, and C. A. Rodrigues, “Use of embryo transfer to alleviate infertility caused by heat stress,” Theriogenology, vol. 155, pp. 1–11, 2020, doi: 10.1016/j.theriogenology.2020.04.028.
38. M. J. Dickson et al., “Experimentally induced endometritis impairs the developmental capacity of bovine oocytes,” Biol. Reprod., vol. 103, no. 3, pp. 508–520, 2020, doi: 10.1093/biolre/ioaa069.
39. P. J. Hansen, “Reproductive physiology of the heat-stressed dairy cow: Implications for fertility and assisted reproduction,” 2019, SciELO Brasil. doi: 10.21451/1984-3143-AR2019-0053.
40. D. Wolfenson, Z. Roth, and R. Meidan, “Impaired reproduction in heat-stressed cattle: Basic and applied aspects,” Anim. Reprod. Sci., vol. 60–61, pp. 535–547, 2000, doi: 10.1016/S0378-4320(00)00102-0.
41. M. G. Diskin, S. M. Waters, M. H. Parr, and D. A. Kenny, “Pregnancy losses in cattle: Potential for improvement,” Reprod. Fertil. Dev., vol. 28, no. 1–2, pp. 83–93, 2016, doi: 10.1071/RD15366.
42. M. K. Adur et al., “Porcine endometrial heat shock proteins are differentially influenced by pregnancy status, heat stress, and altrenogest supplementation during the peri-implantation period,” J. Anim. Sci., vol. 100, no. 7, 2022, doi: 10.1093/jas/skac129.
43. M. C. Lucy, “Stress, strain, and pregnancy outcome in postpartum cows,” 2019, SciELO Brasil. doi: 10.21451/1984-3143-AR2019-0063.
44. S. Nyman, H. Gustafsson, and B. Berglund, “Extent and pattern of pregnancy losses and progesterone levels during gestation in Swedish Red and Swedish Holstein dairy cows,” 2018, Springer. doi: 10.1186/s13028-018-0420-6.
45. M. C. Wiltbank et al., “Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows,” Theriogenology, vol. 86, no. 1, pp. 239–253, 2016, doi: 10.1016/j.theriogenology.2016.04.037.
46. C. O. Evans and S. W. Walsh, “The physiology of multifactorial problems limiting the establishment of pregnancy in dairy cattle,” Reprod. Fertil. Dev., vol. 24, no. 1, pp. 233–237, 2012, doi: 10.1071/RD11912.
47. P. Skliarov, V. Kornienko, S. Midyk, and R. Mylostyvyi, “Impaired Reproductive Performance of Dairy Cows under Heat Stress,” Agric. Conspec. Sci., vol. 87, no. 2, pp. 85–92, 2022, [Online]. Available: https://hrcak.srce.hr/279282
48. L. Roman, M. Bogach, N. Dankevych, O. Bezaltychna, and I. Gurko, Morphological profile of the ovaries of high-yielding cows on day 0 of the induced sexual cycle, vol. 26, no. 7. lib.osau.edu.ua, 2023. doi: 10.48077/scihor7.2023.09.
49. C. F. Oguejiofor, C. Thomas, Z. Cheng, and D. C. Wathes, “Mechanisms linking bovine viral diarrhea virus (BVDV) infection with infertility in cattle,” Anim. Heal. Res. Rev., vol. 20, no. 1, pp. 72–85, 2019, doi: 10.1017/S1466252319000057.
50. Kumaresan, M. Das Gupta, T. K. Datta, and J. M. Morrell, “Sperm DNA Integrity and Male Fertility in Farm Animals: A Review,” Front. Vet. Sci., vol. 7, p. 321, 2020, doi: 10.3389/fvets.2020.00321.
51. L. Capela, I. Leites, R. Romão, L. Lopes-Da-costa, and R. M. L. N. Pereira, “Impact of Heat Stress on Bovine Sperm Quality and Competence,” 2022, mdpi.com. doi: 10.3390/ani12080975.
52. Y. Hao et al., “Gut microbiota-testis axis: FMT improves systemic and testicular micro-environment to increase semen quality in type 1 diabetes,” 2022, Springer. doi: 10.1186/s10020-022-00473-w.
53. M. Ferenčaković, J. Sölkner, M. Kapš, and I. Curik, “Genome-wide mapping and estimation of inbreeding depression of semen quality traits in a cattle population,” 2017, Elsevier. doi: 10.3168/jds.2016-12164.
54. X. Guo et al., “Melatonin alleviates heat stress-induced spermatogenesis dysfunction in male dairy goats by regulating arachidonic acid metabolism mediated by remodeling the gut microbiota,” 2024, Springer. doi: 10.1186/s40168-024-01942-6.
55. J. M. Morrell, “Heat stress and bull fertility,” 2020, Elsevier. doi: 10.1016/j.theriogenology.2020.05.014.
56. N. Llamas Luceño et al., “Exposing dairy bulls to high temperature-humidity index during spermatogenesis compromises subsequent embryo development in vitro,” 2020, Elsevier. doi: 10.1016/j.theriogenology.2019.08.034.
57. Fernandez-Novo, S. S. Pérez-Garnelo, A. Villagrá, N. Pérez-Villalobos, and S. Astiz, “The effect of stress on reproduction and reproductive technologies in beef cattle—A review,” Animals, vol. 10, no. 11, pp. 1–23, 2020, doi: 10.3390/ani10112096.
58. S. M. K. Naqvi, D. Kumar, R. K. Paul, and V. Sejian, “Environmental stresses and livestock reproduction,” Environ. Stress Amelior. Livest. Prod., vol. 9783642292057, pp. 97–128, 2012, doi: 10.1007/978-3-642-29205-7_5.
59. E. Masama, N. T. Kusina, S. Sibanda, and C. Majoni, “Reproduction and lactational performance of cattle in a smallholder dairy system in Zimbabwe,” Trop. Anim. Health Prod., vol. 35, no. 2, pp. 117–129, 2003, doi: 10.1023/A:1022821418031.
60. Ahmed, R. Tiwari, G. Mishra, B. Jena, M. Dar, and A. Bhat, “Effect of Environmental Heat Stress on Reproduction Performance of Dairy Cows- A Review,” 2015, academia.edu. doi: 10.5455/ijlr.20150421122704.
61. P. J. Hansen, “Prospects for gene introgression or gene editing as a strategy for reduction of the impact of heat stress on production and reproduction in cattle,” Theriogenology, vol. 154, pp. 190–202, 2020, doi: 10.1016/j.theriogenology.2020.05.010.
62. Z. Roth, “Effect of Heat Stress on Reproduction in Dairy Cows: Insights into the Cellular and Molecular Responses of the Oocyte,” Annu. Rev. Anim. Biosci., vol. 5, pp. 151–170, 2017, doi: 10.1146/annurev-animal-022516-022849.
63. K. Rathod et al., “Role of micronutrients in production and reproduction of farm animals under climate change scenario,” Trop. Anim. Health Prod., vol. 57, no. 2, p. 31, 2025, doi: 10.1007/s11250-025-04283-0.
64. S. S. Pérez-Garnelo, M. J. Utrilla, A. Fernández-Novo, Á. Revilla-Ruiz, A. Villagrá, and S. Astiz, “Effect of Stress on Reproduction and Reproductive Technologies in Male and Female, Beef and Dairy Cattle,” Assist. Reprod. Technol. Anim. Vol. 1 Curr. Trends Reprod. Manag., vol. 1, pp. 127–193, 2024, doi: 10.1007/978-3-031-73079-5_6.
65. Chavarría et al., “Unmasking seasonal cycles in a high-input dairy herd in a hot environment: How climate shapes dynamics of milk yield, reproduction, and productive status,” J. Therm. Biol., vol. 123, 2024, doi: 10.1016/j.jtherbio.2024.103944.
66. M. M. H. Pasha, M. Z. Rahman, N. Sultana, and …, “Impact of heat stress on female reproduction in farm animals: challenges and possible remedies,” Bangladesh J. …, 2024, [Online]. Available: https://banglajol.info/index.php/BJAS/article/view/76533
67. S. Mondal et al., “Climate Change Impact on Livestock Reproduction,” Emerg. Trends Environ. Biotechnol., pp. 97–108, 2022, doi: 10.1201/9781003186304-8.
68. G. Orjuela, J. L. Parra-Arango, and L. A. Sarmiento-Rubiano, “Bovine leptospirosis: effects on reproduction and an approach to research in Colombia,” 2022, Springer. doi: 10.1007/s11250-022-03235-2.
69. M. Sakatani, “Global warming and cattle reproduction: Will increase in cattle numbers progress to global warming?,” 2022, jstage.jst.go.jp. [Online]. Available: https://www.jstage.jst.go.jp/article/jrd/68/2/68_2021-149/_article/-char/ja/%0Ahttps://www.jstage.jst.go.jp/article/jrd/68/2/68_2021-149/_pdf
70. T. C. Davis and R. R. White, “Breeding animals to feed people: The many roles of animal reproduction in ensuring global food security,” Theriogenology, vol. 150, pp. 27–33, 2020, doi: 10.1016/j.theriogenology.2020.01.041.
71. P. N. Lokamar, M. A. Kutwah, H. Atieli, S. Gumo, and C. Ouma, “Socio-economic impacts of brucellosis on livestock production and reproduction performance in Koibatek and Marigat regions, Baringo County, Kenya,” 2020, Springer. doi: 10.1186/s12917-020-02283-w.
72. P. Purohit et al., “Effect of Heat Stress on Production and Reproduction Potential of Dairy Animals vis-à-vis Buffaloes,” 2020, researchgate.net. doi: 10.5455/ijlr.20191231122709.
73. G. Sawyer and E. J. Narayan, “Climate Change on Sheep Reproduction,” Comp. Endocrinol. Anim., 2019, [Online]. Available: https://books.google.com/books?hl=en&lr=&id=XBT8DwAAQBAJ&oi=fnd&pg=PA53&dq=climate+induced+infertility+in+dairy+cows&ots=A82vqLQ1B8&sig=XNeobNpE8CV8jgo6-msxDi42yFw
74. D. Wolfenson and Z. Roth, “Impact of heat stress on cow reproduction and fertility,” Anim. Front., vol. 9, no. 1, pp. 32–38, 2019, doi: 10.1093/af/vfy027.
75. M. Sheldon, J. G. Cronin, and J. J. Bromfield, “Tolerance and Innate Immunity Shape the Development of Postpartum Uterine Disease and the Impact of Endometritis in Dairy Cattle,” Annu. Rev. Anim. Biosci., vol. 7, pp. 361–384, 2019, doi: 10.1146/annurev-animal-020518-115227.
76. J. J. Bromfield, J. E. P. Santos, J. Block, R. S. Williams, and I. M. Sheldon, “Physiology and endocrinology symposium: Uterine infection: Linking infection and innate immunity with infertility in the high-producing dairy cow,” J. Anim. Sci., vol. 93, no. 5, pp. 2021–2033, 2015, doi: 10.2527/jas.2014-8496.
77. D. C. Wathes, “Developmental Programming of Fertility in Cattle—Is It a Cause for Concern?,” Animals, vol. 12, no. 19, p. 2654, 2022, doi: 10.3390/ani12192654.
78. M. Sheldon, P. C. C. Molinari, T. J. R. Ormsby, and J. J. Bromfield, “Preventing postpartum uterine disease in dairy cattle depends on avoiding, tolerating and resisting pathogenic bacteria,” Theriogenology, vol. 150, pp. 158–165, 2020, doi: 10.1016/j.theriogenology.2020.01.017.
79. L. C. Carneiro, J. G. Cronin, and I. M. Sheldon, “Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility,” Reprod. Biol., vol. 16, no. 1, pp. 1–7, 2016, doi: 10.1016/j.repbio.2015.12.002.
80. C. Velladurai, M. Selvaraju, and R. E. Napolean, “Effects of macro and micro minerals on reproduction in dairy cattle A review,” 2016, academia.edu. [Online]. Available: https://www.academia.edu/download/80500967/230.pdf
81. T. J. Potter, J. Guitian, J. Fishwick, P. J. Gordon, and I. M. Sheldon, “Risk factors for clinical endometritis in postpartum dairy cattle,” Theriogenology, vol. 74, no. 1, pp. 127–134, 2010, doi: 10.1016/j.theriogenology.2010.01.023.
82. G. Ageeb and J. F. Hayes, “Genetic and environmental effects on the productivity of Holstein-Friesian cattle under the climatic conditions of Central Sudan,” Trop. Anim. Health Prod., vol. 32, no. 1, pp. 33–49, 2000, doi: 10.1023/A:1005241002743.
83. K. Pavani, I. Carvalhais, M. Faheem, A. Chaveiro, F. V. Reis, and F. M. Da Silva, “Reproductive performance of holstein dairy cows grazing in dry-summer subtropical climatic conditions: Effect of heat stress and heat shock on meiotic competence and in vitro fertilization,” 2015, pmc.ncbi.nlm.nih.gov. doi: 10.5713/ajas.14.0480.
84. T. Rukkwamsuk, S. Rungruang, and T. Wensing, “Fatty liver in high producing dairy cows kept in evaporative cooling system in a commercial dairy herd in Thailand,” Kasetsart Journal, Nat. Sci., vol. 38, no. 2, pp. 229–235, 2004, [Online]. Available: https://li01.tci-thaijo.org/index.php/anres/article/view/242954
85. D. Ealy, C. F. Aréchiga, D. R. Bray, C. A. Risco, and P. J. Hansen, “Effectiveness of Short-Term Cooling and Vitamin E for Alleviation of Infertility Induced by Heat Stress in Dairy Cows,” J. Dairy Sci., vol. 77, no. 12, pp. 3601–3607, 1994, doi: 10.3168/jds.S0022-0302(94)77304-5.
86. F. R. O. de Barros and F. F. Paula-Lopes, “Cellular and epigenetic changes induced by heat stress in bovine preimplantation embryos,” Mol. Reprod. Dev., vol. 85, no. 11, pp. 810–820, 2018, doi: 10.1002/mrd.23040.
87. M. A. Sirard, “The influence of in vitro fertilization and embryo culture on the embryo epigenetic constituents and the possible consequences in the bovine model,” J. Dev. Orig. Health Dis., vol. 8, no. 4, pp. 411–417, 2017, doi: 10.1017/S2040174417000125.
88. C. O. Evans and S. Zeng, Causes, prevention and management of infertility in dairy cows. researchgate.net, 2017. doi: 10.19103/as.2016.0006.20.

International Journal of Climate Conditions
Volume | 02 |
02 | |
Received | 02/06/2025 |
Accepted | 11/06/2025 |
Published | 05/07/2025 |
Publication Time | 33 Days |