This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.
Gagan Bansal,
Rakesh Kumar Gautam,
Joy Prakash Misra,
Chandra Kishore,
Vartika Agarwal,
- Assistant Professor, Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
- Professor, Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
- Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
- Associate Professor, Department of Mechanical Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
- Assistant Professor, Department of Computer Applications, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
Abstract
Hydroxyapatite (HAp), a biocompatible ceramic material, has garnered significant interest in medical applications due to its natural bone type replica. The current study investigates the physical, wettability, and thermal properties of a novel HAp derived from eggshell waste and reinforced with silver nanoparticles at 0.0, 0.1, 0.2 and 0.5 weight % concentration using chemical precipitation method and termed as HAP0.0Ag, HAP0.1Ag, HAP0.2Ag and HAP0.5Ag respectively. As observed, the Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) morphology confirms the synthesis of eggshell-derived silver-reinforced HAp, and doping improves the voids content in the material. The increase in contact angle from 66.200 ± 2.800 (HAP0.0Ag) to 71.350 ± 1.450 (HAP0.5Ag), decrease in calculated total SFE from 43.15 ± 0.32 (HAP0.0Ag) to 38.21 ± 0.36 (HAP0.5Ag) and decrease in water absorption by 21.31 % between unreinforced and 0.5% reinforced HAp reveals the surface hydrophobicity leading to improved wettability characteristics. The thermal stability and decomposition properties of the materials are assessed using Thermogravimetric analysis (TGA) and Derivative Thermogravimetric curve (DTG), and the results show 7- 8 % decomposition of HAp material when heated till 10000C, providing insights into their suitability for high- temperature applications. The overall analysis opens avenues for diverse use of silver-reinforced HAp, from implant coating to dental implants and catalytic supports.
Keywords: Hybrid Composite, Synthesis, Hydroxyapatite, Nanoparticles, Biocomposites, Biomedical applications
Gagan Bansal, Rakesh Kumar Gautam, Joy Prakash Misra, Chandra Kishore, Vartika Agarwal. Wettability and Physiothermal Analysis of Silver-Reinforced Eggshell-Derived Hydroxyapatite Based Biocomposite. Journal of Polymer and Composites. 2025; 13(03):-.
Gagan Bansal, Rakesh Kumar Gautam, Joy Prakash Misra, Chandra Kishore, Vartika Agarwal. Wettability and Physiothermal Analysis of Silver-Reinforced Eggshell-Derived Hydroxyapatite Based Biocomposite. Journal of Polymer and Composites. 2025; 13(03):-. Available from: https://journals.stmjournals.com/jopc/article=2025/view=208680
References
[1] I. Abdulrahman, H.I. Tijani, B.A. Mohammed, H. Saidu, H. Yusuf, M. Ndejiko Jibrin, S. Mohammed, From Garbage to Biomaterials: An Overview on Egg Shell Based Hydroxyapatite, J. Mater. 2014 (2014) 1–6. https://doi.org/10.1155/2014/802467.
[2] S. Balhuc, R. Campian, A. Labunet, M. Negucioiu, S. Buduru, A. Kui, Dental Applications of Systems Based on Hydroxyapatite Nanoparticles—An Evidence-Based Update, Crystals. 11 (2021) 674. https://doi.org/10.3390/cryst11060674.
[3] S. Das Lala, P. Deb, E. Barua, A.B. Deoghare, S. Chatterjee, Characterization of hydroxyapatite derived from eggshells for medical implants, Mater. Today Proc. 15 (2019) 323–327. https://doi.org/10.1016/j.matpr.2019.05.012.
[4] T.T. Hoai, N.K. Nga, L.T. Giang, T.Q. Huy, P.N.M. Tuan, B.T.T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater. 46 (2017) 5064–5072. https://doi.org/10.1007/S11664-017-5509-6.
[5] M. Malakauskaite-Petruleviciene, Z. Stankeviciute, A. Beganskiene, A. Kareiva, Sol–gel synthesis of calcium hydroxyapatite thin films on quartz substrate using dip-coating and spin-coating techniques, J. Sol-Gel Sci. Technol. 71 (2014) 437–446. https://doi.org/10.1007/s10971-014-3394-5.
[6] A.Ç. Kılınç, S. Köktaş, A.A. Göktaş, Characterization of eggshell-derived hydroxyapatite on Ti6Al4V metal substrate coated by sol–gel method, J. Aust. Ceram. Soc. 57 (2021) 47–53. https://doi.org/10.1007/s41779-020-00511-y.
[7] A. Jaafar, C. Hecker, P. Árki, Y. Joseph, Sol-gel derived hydroxyapatite coatings for titanium implants: A review, Bioengineering. 7 (2020) 1–23. https://doi.org/10.3390/bioengineering7040127.
[8] A. Pal, S. Maity, S. Chabri, S. Bera, A.R. Chowdhury, M. Das, A. Sinha, Mechanochemical synthesis of nanocrystalline hydroxyapatite from Mercenaria clam shells and phosphoric acid, Biomed. Phys. Eng. Express. 3 (2017) 015010. https://doi.org/10.1088/2057-1976/aa54f5.
[9] C. Suresh Kumar, K. Dhanaraj, R.M. Vimalathithan, P. Ilaiyaraja, G. Suresh, Hydroxyapatite for bone related applications derived from sea shell waste by simpleprecipitation method, J. Asian Ceram. Soc. 8 (2020) 416–429. https://doi.org/10.1080/21870764.2020.1749373.
[10] A. Yelten-Yilmaz, S. Yilmaz, Wet chemical precipitation synthesis of hydroxyapatite (HA) powders, Ceram. Int. 44 (2018) 9703–9710. https://doi.org/10.1016/j.ceramint.2018.02.201.
[11] H. Peng, J. Wang, S. Lv, J. Wen, J.F. Chen, Synthesis and characterization of hydroxyapatite nanoparticles prepared by a high-gravity precipitation method, Ceram. Int. 41 (2015) 14340–14349. https://doi.org/10.1016/j.ceramint.2015.07.067.
[12] D.G. Nelson, J.D. Featherstone, Preparation, analysis, and characterization of carbonated apatites., Calcif. Tissue Int. 34 Suppl 2 (1982) S69-81. http://www.ncbi.nlm.nih.gov/pubmed/6293677.
[13] S. Panda, C.K. Biswas, S. Paul, A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering, Ceram. Int. 47 (2021) 28122–28144. https://doi.org/10.1016/j.ceramint.2021.07.100.
[14] S. Das Lala, E. Barua, P. Deb, A.B. Deoghare, Physico-chemical and biological behaviour of eggshell bio-waste derived nano-hydroxyapatite matured at different aging time, Mater. Today Commun. 27 (2021). https://doi.org/10.1016/j.mtcomm.2021.102443.
[15] G. Bansal, R.K. Gautam, J.P. Misra, A. Mishra, Tribological behavior of silver-doped eggshell-derived hydroxyapatite reinforcement in PMMA-based composite, (2024). https://doi.org/10.1177/14644207241240623.
[16] G. Bansal, R.K. Gautam, J.P. Misra, A. Mishra, Coating Methods for Hydroxyapatite—A Bioceramic Material, in: 2023: pp. 279–302. https://doi.org/10.1007/978-981-99-3549-9_13.
[17] A.R.S. Manral, N. Gariya, G. Bansal, H.P. Singh, A. Rawat, Computational stress analysis of Chicken Feather Fibre (CFF) with Epoxy-Resin matrix composite material, in: Mater. Today Proc., 2019. https://doi.org/10.1016/j.matpr.2020.02.582.
[18] G. Bansal, V.K. Singh, P.C. Gope, A. Jain, Thermal Characterization , Compositional Analysis and Extraction of Elemental Powder from Rohu Fish Residue used as Composite Particulate, 5 (2017) 25–33.
[19] A. Mishra, P.K. Mishra, G. Bansal, Recent advances in coating characterization techniques, Dyn. Mech. Creep-Recovery Behav. Polym. Compos. (2024) 461–484. https://doi.org/10.1016/B978-0-443-19009-4.00024-2.
[20] S. Santhosh, S. Balasivanandha Prabu, Thermal stability of nano hydroxyapatite synthesized from sea shells through wet chemical synthesis, Mater. Lett. 97 (2013) 121–124. https://doi.org/10.1016/j.matlet.2013.01.081.
[21] A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications, Adv. Colloid Interface Sci. 249 (2017) 321–330. https://doi.org/10.1016/J.CIS.2017.04.007.
[22] T. Varadavenkatesan, R. Vinayagam, S. Pai, B. Kathirvel, A. Pugazhendhi, R. Selvaraj, Synthesis, biological and environmental applications of hydroxyapatite and its composites with organic and inorganic coatings, Prog. Org. Coatings. 151 (2021) 106056. https://doi.org/10.1016/j.porgcoat.2020.106056.
[23] G. Bansal, R.K. Gautam, J.P. Misra, A. Mishra, Physiomechanical, Flowability, and Antibacterial Characterization of Silver-Doped Eggshell-Derived Hydroxyapatite for Biomedical Applications, J. Mater. Eng. Perform. (2023). https://doi.org/10.1007/s11665-023-08696-6.
[24] A.J. Ansari, G. Bansal, S.A.H. Rizvi, Effect of reinforcement particles and multipass of friction stir processing on microstructure and mechanical properties of aluminium alloy, Mater. Lett. 355 (2024) 135555. https://doi.org/10.1016/j.matlet.2023.135555.
[25] D.B. Singh, N. Kumar, A. Raturi, G. Bansal, A. Nirala, N. Sengar, Effect of Flow of Fluid Mass Per Unit Time on Life Cycle Conversion Efficiency of Double Slope Solar Desalination Unit Coupled with N Identical Evacuated Tubular Collectors, in: 2021. https://doi.org/10.1007/978-981-15-8542-5_34.
[26] A. Maidaniuc, F. Miculescu, S.I. Voicu, C. Andronescu, M. Miculescu, E. Matei, A.C. Mocanu, I. Pencea, I. Csaki, T. Machedon-Pisu, L.T. Ciocan, Induced wettability and surface-volume correlation of composition for bovine bone derived hydroxyapatite particles, Appl. Surf. Sci. 438 (2018) 158–166. https://doi.org/10.1016/j.apsusc.2017.07.074.
[27] M. Mirzaee, M. Vaezi, Y. Palizdar, Synthesis and characterization of silver doped hydroxyapatite nanocomposite coatings and evaluation of their antibacterial and corrosion resistance properties in simulated body fluid, Mater. Sci. Eng. C. 69 (2016) 675–684. https://doi.org/10.1016/j.msec.2016.07.057.
[28] Q. Zhou, T. Wang, C. Wang, Z. Wang, Y. Yang, P. Li, R. Cai, M. Sun, H. Yuan, L. Nie, Synthesis and characterization of silver nanoparticles-doped hydroxyapatite/alginate microparticles with promising cytocompatibility and antibacterial properties, Colloids Surfaces A Physicochem. Eng. Asp. 585 (2020) 124081. https://doi.org/10.1016/j.colsurfa.2019.124081.
[29] Q. Yuan, A. Xu, Z. Zhang, Z. Chen, L. Wan, X. Shi, S. Lin, Z. Yuan, L. Deng, Bioactive silver doped hydroxyapatite composite coatings on metal substrates: Synthesis and characterization, Mater. Chem. Phys. 218 (2018) 130–139. https://doi.org/10.1016/j.matchemphys.2018.07.038.
[30] X. Shi, J. Zhou, G. Liu, L. Wang, The Physical and Antimicrobial Properties of Silver Doped Hydroxyapatite Sintered by Microwave and Conventional Sintering, J. Inorg. Organomet. Polym. Mater. 27 (2017) 955–961. https://doi.org/10.1007/s10904-017-0542-8.
[31] M. Roy, G.A. Fielding, H. Beyenal, A. Bandyopadhyay, S. Bose, Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating, ACS Appl. Mater. Interfaces. 4 (2012) 1341–1349. https://doi.org/10.1021/am201610q.
[32] C.K. Patil, H.D. Jirimali, J.S. Paradeshi, B.L. Chaudhari, V. V. Gite, Functional antimicrobial and anticorrosive polyurethane composite coatings from algae oil and silver doped egg shell hydroxyapatite for sustainable development, Prog. Org. Coatings. 128 (2019) 127–136. https://doi.org/10.1016/j.porgcoat.2018.11.002.
[33] P. Vijayaraghavan, M.A. Rathi, K.S. Almaary, F.S. Alkhattaf, Y.B. Elbadawi, S.W. Chang, B. Ravindran, Preparation and antibacterial application of hydroxyapatite doped Silver nanoparticles derived from chicken bone, J. King Saud Univ. – Sci. 34 (2022) 101749. https://doi.org/10.1016/j.jksus.2021.101749.
[34] F. Nurfiana, A. Kadarwati, S. Putra, Synthesis and characterization of hydroxyapatite from duck eggshell modified silver by gamma radiolysis method, J. Phys. Conf. Ser. 1436 (2020) 012099. https://doi.org/10.1088/1742-6596/1436/1/012099.
[35] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741–1747. https://doi.org/10.1002/app.1969.070130815.
[36] S. Sebastiammal, A.S. Lesly Fathima, S. Alarifi, S. Mahboob, J. Henry, M.R. Kavipriya, M. Govindarajan, M. Nicoletti, B. Vaseeharan, Synthesis and physicochemical characteristics of Ag-doped hydroxyapatite nanoparticles, and their potential biomedical applications, Environ. Res. 210 (2022) 112979. https://doi.org/10.1016/j.envres.2022.112979.
[37] V. Ganesan, M. Devaraj, S.K. Govindan, V.S. Kattimani, G. Easwaradas Kreedapathy, Eggshell derived mesoporous biphasic calcium phosphate for biomedical applications using rapid thermal processing, Int. J. Appl. Ceram. Technol. 16 (2019) 1932–1943. https://doi.org/10.1111/IJAC.13270.
[38] K.C.C. Vinoth Kumar, T. Jani Subha, K.G.G. Ahila, B. Ravindran, S.W.W. Chang, A.H. Mahmoud, O.B. Mohammed, M.A.A. Rathi, Spectral characterization of hydroxyapatite extracted from Black Sumatra and Fighting cock bone samples: A comparative analysis, Saudi J. Biol. Sci. 28 (2021) 840–846. https://doi.org/10.1016/j.sjbs.2020.11.020.
[39] C. Chappard, G. André, M. Daudon, D. Bazin, Analysis of hydroxyapatite crystallites in subchondral bone by Fourier transform infrared spectroscopy and powder neutron diffraction methods, Comptes Rendus Chim. 19 (2016) 1625–1630. https://doi.org/10.1016/j.crci.2015.03.015.
[40] S.L. Iconaru, P. Chapon, P. Le Coustumer, D. Predoi, Antimicrobial Activity of Thin Solid Films of Silver Doped Hydroxyapatite Prepared by Sol-Gel Method, Sci. World J. 2014 (2014) 1–8. https://doi.org/10.1155/2014/165351.
[41] J.M. dos Santos Nunes Reis, C.E. Vergani, A.C. Pavarina, E.T. Giampaolo, A.L. Machado, Effect of relining, water storage and cyclic loading on the flexural strength of a denture base acrylic resin, J. Dent. 34 (2006) 420–426. https://doi.org/10.1016/j.jdent.2005.10.001.
[42] W.L. Tham, W.S. Chow, Z.A.M. Ishak, Simulated body fluid and water absorption effects on poly(methyl methacrylate)/hydroxyapatite denture base composites, Express Polym. Lett. 4 (2010) 517–528. https://doi.org/10.3144/expresspolymlett.2010.66.
[43] S. Eraković, A. Janković, D. Veljović, E. Palcevskis, M. Mitrić, T. Stevanović, D. Janaćković, V. Miskovic-Stankovic, Corrosion stability and bioactivity in simulated body fluid of silver/hydroxyapatite and silver/hydroxyapatite/lignin coatings on titanium obtained by electrophoretic deposition, J. Phys. Chem. B. 117 (2013) 1633–1643. https://doi.org/10.1021/jp305252a.
[44] M. Nakamura, N. Hori, H. Ando, S. Namba, T. Toyama, N. Nishimiya, K. Yamashita, Surface free energy predominates in cell adhesion to hydroxyapatite through wettability, Mater. Sci. Eng. C. 62 (2016) 283–292. https://doi.org/10.1016/j.msec.2016.01.037.
[45] S. V. Harb, N.J. Bassous, T.A.C. de Souza, A. Trentin, S.H. Pulcinelli, C. V. Santilli, T.J. Webster, A.O. Lobo, P. Hammer, Hydroxyapatite and β-TCP modified PMMA-TiO2 and PMMA-ZrO2 coatings for bioactive corrosion protection of Ti6Al4V implants, Mater. Sci. Eng. C. 116 (2020) 111149. https://doi.org/10.1016/J.MSEC.2020.111149.
[46] A. Szcześ, Y. Yan, E. Chibowski, L. Hołysz, M. Banach, Properties of natural and synthetic hydroxyapatite and their surface free energy determined by the thin-layer wicking method, Appl. Surf. Sci. 434 (2018) 1232–1238. https://doi.org/10.1016/j.apsusc.2017.11.250.
[47] M.R. Senra, R.B. de Lima, D. de H.S. Souza, M. de F.V. Marques, S.N. Monteiro, Thermal characterization of hydroxyapatite or carbonated hydroxyapatite hybrid composites with distinguished collagens for bone graft, J. Mater. Res. Technol. 9 (2020) 7190–7200. https://doi.org/10.1016/j.jmrt.2020.04.089.
[48] S. Lazić, S. Zec, N. Miljević, S. Milonjić, The effect of temperature on the properties of hydroxyapatite precipitated from calcium hydroxide and phosphoric acid, Thermochim. Acta. 374 (2001) 13–22. https://doi.org/10.1016/S0040-6031(01)00453-1.
[49] A. Tuna, Y. Okumuş, H. Çelebi, A.T. Seyhan, Thermochemical conversion of poultry chicken feather fibers of different colors into microporous fibers, J. Anal. Appl. Pyrolysis. 115 (2015) 112–124. https://doi.org/10.1016/j.jaap.2015.07.008.

Journal of Polymer and Composites
Volume | 13 |
03 | |
Received | 12/11/2024 |
Accepted | 17/12/2024 |
Published | 24/04/2025 |
Publication Time | 163 Days |