Neurodegeneration and Cognitive Decline: Causes, Consequences, and Treatment Approaches

Notice

This is an unedited manuscript accepted for publication and provided as an Article in Press for early access at the author’s request. The article will undergo copyediting, typesetting, and galley proof review before final publication. Please be aware that errors may be identified during production that could affect the content. All legal disclaimers of the journal apply.

Year : 2025 | Volume : 03 | Issue : 01 | Page : –
    By

    Pooja Kumari,

  • Poonam Kumari,

  • Pooja Kumari,

  • Versha Sharma,

Abstract

Neurodegenerative diseases gradually destroy nerve cells, often leading to fatal outcomes. The phrase includes a wide range of clinical problems, such as a variety of
Neurological conditions include movement disorders like Parkinson’s disease (PD) and progressive cognitive impairments, with Alzheimer’s disease (AD) being the most common among them. A loss of neurones and synaptic connections, typically in later life, is a prevalent feature of, Usually, the onset and development of clinical symptoms ,are directly correlated with the extent of neuronal death. Early in AD, the hippocampus—a part of the brain involved in declarative episodic memory experiencesloss of neuro cells . Tremors, slow movement, and balance problems are the key signs of the condition.clinical trio of Parkinson’s disease (PD), and they only show up when 70–80% of the dopaminergic neurones in the substantia nigra are gone.

Keywords: Neurodegeneration, Neuroprotection , Alzheimer’s Disease, Parkinson’s Disease, Epilepsy, Stroke

[This article belongs to International Journal of Cell Biology and Cellular Functions ]

How to cite this article:
Pooja Kumari, Poonam Kumari, Pooja Kumari, Versha Sharma. Neurodegeneration and Cognitive Decline: Causes, Consequences, and Treatment Approaches. International Journal of Cell Biology and Cellular Functions. 2025; 03(01):-.
How to cite this URL:
Pooja Kumari, Poonam Kumari, Pooja Kumari, Versha Sharma. Neurodegeneration and Cognitive Decline: Causes, Consequences, and Treatment Approaches. International Journal of Cell Biology and Cellular Functions. 2025; 03(01):-. Available from: https://journals.stmjournals.com/ijcbcf/article=2025/view=203256



References

1. Jain KK. The handbook of neuroprotection. Humana; New York: 2011. [CrossRef] [Google Scholar]

2. Bhat SA, Kamal MA, Yarla NS, Ashraf GM. Synopsis on management strategies for neurodegenerative disorders: Challenges from bench to bedside in successful drug discovery and development. Curr Top Med Chem. 2017;17(12):1371–1378. [http://dx.doi.org/10.2174/1568026616666161222121229]. [PMID: 28017151]. [PubMed][Google Scholar]

3. Farooqui AA. Chapter 1—Molecular aspects of neurodegeneration and classification of neurological disorders. In: Farooqui AA, editor. Molecular Aspects of Neurodegeneration, Neuroprotection, and Regeneration in Neurological Disorders. Cambridge, MA, USA: Academic Press; 2021. p. 1–40.

4. Casado ME, Collado-Pérez R, Frago LM, Barrios V. Recent Advances in the Knowledge of the Mechanisms of Leptin Physiology and Actions in Neurological and Metabolic Pathologies. Int J Mol Sci. 2023;24:1422. [CrossRef] [PubMed]

5. Zamanian MY, Ivraghi MS, Gupta R, Prasad KDV, Alsaab HO, Hussien BM, Ahmed H, Ramadan MF, Golmohammadi M, Nikbakht N, et al. miR-221 and Parkinson’s disease: A biomarker with therapeutic potential. Eur J Neurosci. 2024;59:283–297. [CrossRef]

6. Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11:34. [Google Scholar] [CrossRef]

7. Zhang XX, Tian Y, Wang ZT, Ma YH, Tan L, Yu JT. The epidemiology of Alzheimer’s disease modifiable risk factors and prevention. J Prev Alzheimers Dis. 2021;8:313–321. [Google Scholar] [CrossRef] [PubMed]

8. Ou Z, Pan J, Tang S, Duan D, Yu D, Nong H, Wang Z. Global trends in the incidence, prevalence, and years lived with disability of Parkinson’s disease in 204 countries/territories from 1990 to 2019. Front Public Health. 2021;9:776847. [Google Scholar] [CrossRef] [PubMed]

9. Kawas CH, Corrada MM. Alzheimer’s and dementia in the oldest-old: A century of challenges. Curr Alzheimer Res. 2006;3:411–419. [CrossRef] [PubMed]

10. Breijyeh Z, Karaan R. Comprehensive review on Alzheimer’s disease: Causes and treatment. Molecules. 2020;25:5789. [Google Scholar] [CrossRef] [PubMed]

11. Jankovic J, Tan EK. Parkinson’s disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 2020;91:795–808. [Google Scholar] [CrossRef]

12. Dadhania VP, Trivedi PP, Vikram A, Tripathi DN. Nutraceuticals against neurodegeneration: A mechanistic insight. Curr Neuropharmacol. 2016;14(6):627–640. [http://dx.doi.org/10.2174/1570159X14666160104142223]. [PMID: 26725888]. [PMC free article] [PubMed] [Google Scholar]

13. Wang F, Shing M, Huen Y, Tsang SY, Xue H. Neuroactive flavonoids interacting with GABAA receptor complex. Curr Drug Targets CNS Neurol Disord. 2005;4(5):575–585. [http://dx.doi.org/10.2174/156800705774322030]. [PMID: 16266290]. [PubMed] [Google Scholar]

14. Luk KC, Stern L, Weigele M, O’Brien RA, Spirt N. Isolation and identification of “diazepam-like” compounds from bovine urine. J Nat Prod. 1983;46(6):852–861. [http://dx.doi.org/10.1021/np50030a005]. [PMID: 6330305]. [PubMed] [Google Scholar]

15. Häberlein H, Tschiersch K-P, Boonen G, Hiller K-O. Chelidonium majus L.: components with in vitro affinity for the GABAA receptor. Positive cooperation of alkaloids. Planta Med. 1996;62(3):227–231. [http://dx.doi.org/10.1055/s-2006-957865]. [PMID: 8693034]. [PubMed] [Google Scholar]

16. Leung WC, Zheng H, Huen M, Law SL, Xue H. Anxiolytic-like action of orally administered dl-tetrahydropalmatine in elevated plus-maze. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(5):775–779. [http://dx.doi.org/10.1016/S0278-5846(03)00108-8]. [PMID: 12921909]. [PubMed] [Google Scholar]

17. Liao J-F, Wang H-H, Chen M-C, Chen C-C, Chen C-F. Benzodiazepine binding site-interactive flavones from Scutellaria baicalensis root. Planta Med. 1998;64(6):571–572.

18. Hui KM, Wang X-H, Xue H. Interaction of flavones from the roots of Scutellaria baicalensis with the benzodiazepine site. Planta Med. 2000;66(1):91–93

19. Lin R-D, Hou W-C, Yen K-Y, Lee M-H. Inhibition of monoamine oxidase B (MAO-B) by Chinese herbal medicines. Phytomedicine. 2003;10(8):650–656.

20. Simpson DSA, Oliver PL. ROS Generation in Microglia: Understanding Oxidative Stress and Inflammation in Neurodegenerative Disease. Antioxidants. 2020;9:743.

21. Ren J-X, Sun X, Yan X-L, Guo Z-N, Yang Y. Ferroptosis in Neurological Diseases. Front Cell Neurosci. 2020;14:218.

22. Gao J, Wang L, Liu J, et al. Neurodegenerative diseases: a review of the current status and future prospects. J Neurodegener Dis. 2020;12:1-13.

23. De-Paula VJ, Radanovic M, Diniz BS, Forlenza OV. Alzheimer’s disease. Sub-Cell Biochem. 2012;65:329–352. doi: 10.1007/978-94-007-5416-4_14. [PubMed] [CrossRef] [Google Scholar

24. Nisbet RM, et al. Tau phosphorylation and tauopathies. Biochem Soc Trans. 2015.

25. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001.

26. Terry RD, Davies P. Dementia of the Alzheimer’s type. Annu Rev Neurosci. 1992;15:537–562.

27. Rathmann KL, Conner CS. Alzheimer’s disease: Clinical features, pathogenesis, and treatment.

28. Ferri CP, Prince M, Brayne C. Global prevalence of dementia: a Delphi consensus study. Lancet. 2005;366(9503):2112-2117

29. Turner RC. Alzheimer’s disease. Semin Neurol. 2006;26(1):32–39.

30. Helmer C, Joly P, Letenneur L, Commenges D, Dartigues JF. Majority with dementia: results from a French prospective community-based cohort. Neuroepidemiology. 2001;20(1):12–19. [CrossRef]

31. Dubois B, Hampel H, Feldman HH, Scheltens P, Aisen P, Andrieu S, et al. Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimer’s Dement. 2016;12(3):292–323. doi: 10.1016/j.jalz.2016.02.002
32. Kumar A, Sidhu J, Goyal A. Alzheimer Disease. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499922/ [Accessed 8 Dec 2020].

33. Wattmo C, Minthon L, Wallin AK. Mild versus moderate stages of Alzheimer’s disease: Three-year outcomes in a routine clinical setting of cholinesterase inhibitor therapy. Alzheimer’s Res Ther. 2016;8(1):7. doi: 10.1186/s13195-016-0174-1.

34. Apostolova LG. Alzheimer disease. Continuum. 2016;22(2):419–434. doi: 10.1212/CON.0000000000000307.

35. Armstrong RA. Risk factors for Alzheimer’s disease. Folia Neuropathol. 2019;57(2):87–105. doi: 10.5114/fn.2019.85929.

36. Anand P, Singh B. A review on cholinesterase inhibitors for Alzheimer’s disease. Arch Pharm Res. 2013;36(4):375–399. doi: 10.1007/s12272-013-0036-3.

37. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006;(1):CD005593.

38. Loy C, Schneider L. Galantamine for Alzheimer’s disease and mild cognitive impairment. Cochrane Database Syst Rev. 2006;(1):CD001747.

39. McShane R, Areosa Sastre A, Minakaran N. Memantine for dementia. Cochrane Database Syst Rev. 2006;(2):CD003154.

40. Birks J, Grimley Evans J. Ginkgo biloba for cognitive impairment and dementia. Cochrane Database Syst Rev. 2009;(1):CD003120.

41. Cognex (tacrine hydrochloride) [package insert]. Parke-Davis; 2001.

42. Chaudhuri KR, et al. International Parkinson and Movement Disorder Society-endorsed PD diagnostic criteria. Mov Disord. 2018;33(7): 981–991.

43. Schrag A, Horsfall L, Walters K, et al. Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol. 2015;14(1):57–64. doi: 10.1016/S1474-4422(14)70239-7.

44. Chen JJ, Swope DM. Parkinson’s disease. In: DiPiro JT, Talbert RL, Yee GC, et al., editors. Pharmacotherapy: A Pathophysiologic Approach. 9th ed. New York: McGraw-Hill; 2014.

45. Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217. doi: 10.1124/pr.110.003555.

46. Galvan A, Wichmann T. GABAergic circuits in the basal ganglia and movement disorders. Prog Brain Res. 2007;160:287–312. doi: 10.1016/S0079-6123(06)60018-7.

47. Brunton LL. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 13th ed. New York: McGraw-Hill Education; 2020.

48. Fisher RS, et al. ILAE Official Report: A practical clinical definition of epilepsy. Epilepsia. 2014;55(4):475–482. doi: 10.1111/epi.12550.

49. Berg AT, et al. Revised terminology and concepts for organization of seizures and epilepsies. Epilepsia. 2010;51(4):676–685. doi: 10.1111/j.1528-1167.2009.02345.x.

50. Avoli M, et al. Generalized seizures and their substrates. Epilepsia. 2016;57(5):675–687. doi: 10.1111/epi.13446.

51. Holmes GL. Effects of seizures on brain development. Epilepsia. 2015;56(Suppl 1):11–15. doi: 10.1111/epi.13061.

52. Eze CN, Ebuehi OM, Brigo F, Otte WM, Igwe SC. Effect of health education on trainee teachers’ knowledge, attitudes, and first aid management of epilepsy: An interventional study. Seizure. 2015;33:46–53. doi: 10.1016/j.seizure.2015.10.004.

53. Zhao T, Gao Y, Zhu X, et al. Awareness, attitudes toward epilepsy, and first aid knowledge of seizures of hospital staff in Henan, China. Epilepsy Behav. 2017;74:144–148. doi: 10.1016/j.yebeh.2017.06.010.

54. Wyllie E, editor. The Treatment of Epilepsy: Principles and Practice. 5th ed. Philadelphia, PA: Lippincott Williams & Wilkins; 2011.

55. Shakir R. The struggle for stroke reclassification. Nat Rev Neurol. 2018;14(8):447–448. doi: 10.1038/s41582-018-0036-5.

56. Testai FD, Aiyagari V. Acute hemorrhagic stroke pathophysiology and medical interventions: Blood pressure control, management of anticoagulant-associated brain hemorrhage and general management principles. J Clin Neurosci. 2018;56:1–6. doi: 10.1016/j.jocn.2018.04.027.

57. Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: Secondary brain injury. Stroke. 2011;42(6):1781–1786. doi: 10.1161/STROKEAHA.110.596718.

58. Chen S, Zeng L, Hu Z. Progressing hemorrhagic stroke: Categories, causes, mechanisms, and managements. J Neurol. 2014;261(4):642–650. doi: 10.1007/s00415-014-7236-6.

59. Musuka TD, Wilton SB, Traboulsi M, Hill MD. Diagnosis and management of acute ischemic stroke: Speed is critical. CMAJ. 2016;188(11):835–843. doi: 10.1503/cmaj.160127

60. Broughton BR, Reutens DC, Sobey CG. Apoptotic mechanisms after cerebral ischemia. Stroke. 2009;40(2):e331–e339. doi: 10.1161/STROKEAHA.108.531632.

61. Kissela BM, Khoury JC, Alwell K. Age at stroke: temporal trends in stroke incidence in a large, biracial population. Neurology. 2012;79(12):1277–1284. doi: 10.1212/WNL.0b013e31826e78e3.

62. Tirschwell DL, Smith NL, Heckbert SR, Lemaitre RN, Longstreth WT Jr., Psaty BM. Association of cholesterol with stroke risk varies in stroke subtypes and patient subgroups. Neurology. 2004;63(10):1868–1875. doi: 10.1212/01.wnl.0000144282.42222.da.

63. Powers BJ, Danus S, Grubber JM, Olsen MK, Oddone EZ, Bosworth HB. The effectiveness of personalized coronary heart disease and stroke risk communication. Am Heart J. 2011;161(4):673–680. doi: 10.1016/j.ahj.2010.12.021.

64. Katzung BG. Basic & Clinical Pharmacology. 14th ed. New York: McGraw-Hill Education; 2020.

65. Correll CU, Howes OD. Treatment-Resistant Schizophrenia: Definition, Predictors, and Therapy Options. J Clin Psychiatry. 2021;82(5):36608.

66. Fond G, Lançon C, Korchia T, Auquier P, Boyer L. The Role of Inflammation in the Treatment of Schizophrenia. Front Psychiatry. 2020;11:160. doi: 10.3389/fpsyt.2020.00160.

67. Vallée A. Neuroinflammation in Schizophrenia: The Key Role of the WNT/β-Catenin Pathway. Int J Mol Sci. 2022;23(5):2810. doi: 10.3390/ijms23052810.

68. Schatzberg AF, Nemeroff CB. The American Psychiatric Publishing Textbook of Psychopharmacology. 4th ed. Arlington: American Psychiatric Publishing; 2009.


Regular Issue Subscription Review Article
Volume 03
Issue 01
Received 06/03/2025
Accepted 08/03/2025
Published 10/03/2025
Publication Time 4 Days


My IP

PlumX Metrics