Exploring The Therapeutical Potential Of Pongamia Pinnata For Herpes Simplex Virus Type 1 (HSV-1)

Year : 2024 | Volume : | : | Page : –
By
vector

Snehal Nandkumar Patil Kutwade,

  1. Student, Department of Bioinformatics, BioNome, Bangalore, Karnataka, India

Abstract document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_abs_127283’);});Edit Abstract & Keyword

Objective: Pongamia pinnata (L.), commonly known as Indian Beech or Pongam Tree is a tropical plant renowned for its medicinal properties in traditional medicine systems. Extracts derived from various parts of Pongamia pinnata have demonstrated antimicrobial, anti-inflammatory, and immunomodulatory activities. Such attributes make it a compelling candidate for exploring its therapeutic potential against HSV infections. Thymidine Kinase is the target protein mostly used in the treatment of HSV1 infections. In this study the various phytocompounds present in the Pongamia pinnata are chosen to investigate their pharmacological characteristics and therapeutic aspects against the targeted protein Thymidine Kinase in the treatment of HSV1 infection. Method: In this study, the phytoconstituents of Pongamia pinnata were derived from IMPPAT database and structures were downloaded by using PubChem database. Pharmacological analysis of phytocompounds were done by using the SwissADME, ADMETLAB 2.0 tools. The protein structure is downloaded from RCSB-PDB and validated using PDBsum generate and BIOVIA discovery studio software. By using the PyRx, virtual screening tool the docking were performed and results were investigate to calculate the binding affinity between targeted protein and phytocompounds (ligands).   Result: The 3 phytocompounds of Pongamia pinnata, Ovalichromene B, Pongachromene and Isopongachromene are discovered to show the high binding affinity with targeted protein Thymidine kinase. Conclusion:  The phytoconstituents of Pongamia pinnata have potential to be used in the treatment of Herpes simplex virus 1 infection. However, further in vitro analysis is required to support this finding.

Keywords: Pongamia pinnata (L.), Herpes Simplex Virus (HSV), Thymidine kinase, Phytocompounds, Pharmacological Analysis, Toxicity Analysis, Molecular Docking.

How to cite this article:
Snehal Nandkumar Patil Kutwade. Exploring The Therapeutical Potential Of Pongamia Pinnata For Herpes Simplex Virus Type 1 (HSV-1). Research & Reviews: A Journal of Microbiology & Virology. 2024; ():-.
How to cite this URL:
Snehal Nandkumar Patil Kutwade. Exploring The Therapeutical Potential Of Pongamia Pinnata For Herpes Simplex Virus Type 1 (HSV-1). Research & Reviews: A Journal of Microbiology & Virology. 2024; ():-. Available from: https://journals.stmjournals.com/rrjomv/article=2024/view=0

Full Text PDF

References
document.addEventListener(‘DOMContentLoaded’,function(){frmFrontForm.scrollToID(‘frm_container_ref_127283’);});Edit

  1. Herpes simplex virus [Internet]. Who.int. World Health Organization: WHO; 2024. Available from: https://www.who.int/news-room/fact-sheets/detail/herpes-simplex-virus
  2. Al Muqarrabun, L. M., Ahmat, N., Ruzaina, S. A., Ismail, N. H., & Sahidin, I. (2013). Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review. Journal of ethnopharmacology, 150(2), 395–420. https://doi.org/10.1016/j.jep.2013.08.041
  3. Brijesh S, Daswani P G, Tetali P. Studies on Pongamia pinnata (L.) Pierre leaves: Understanding the mechanism(s) of action in infectious diarrhea. J Zhejiang Univ. Sci. B 2006; 7: 665-74.
  4. Simonsen HT,  Nordskjold  JB,  Smitt    In  vitro  screening  of Indian  medicinal  plants  for  antiplasmodial  activity,  J Ethnopharmacol, 2001; 74: 195-204.
  5. Srinivasan K,  Muruganandan  S  and  Lal  J,  Evaluation  of  anti-inflammatory  activity of  Pongamia  pinnata  leaves  in    J Ethnopharmacol 2001; 78:151–157.
  6. Punitha R,  Manoharan    Antihyperglycaemic  and antilipidperoxidative effects of Pongamia pinnata (Linn.) Pierrre flowers in alloxan-induced diabetic.  J Ethon Pharmacol  2006; 105: 39-46.
  7. Essa MM,  Subramanian    Pongamia  pinnata  modulates oxidant  and  antioxidant  imbalance  in  ammonium  chloride induced  hyperammonem.  Fundaml.  Clin. Pharmacol  2006;  20: 299-303.
  8. Yadav RD, Jain SK, Alok S, Prajapati SK, Verma A. Pongamia pinnata: an overview. International Journal of Pharmaceutical Sciences and Research. 2011 Mar 1;2(3):494.
  9. Al Muqarrabun LM, Ahmat N, Ruzaina SA, Ismail NH, Sahidin I. Medicinal uses, phytochemistry and pharmacology of Pongamia pinnata (L.) Pierre: a review. J Ethnopharmacol. 2013 Nov 25;150(2):395-420. doi: 10.1016/j.jep.2013.08.041. Epub 2013 Sep 7. PMID: 24016802.
  10. Vogt J, Perozzo R, Pautsch A, Prota A, Schelling P, Pilger B, Folkers G, Scapozza L, Schulz GE. Nucleoside binding site of herpes simplex type 1 thymidine kinase analyzed by X-ray crystallography. Proteins. 2000 Dec 1;41(4):545-53. doi: 10.1002/1097-0134(20001201)41:43.0.co;2-8. PMID: 11056041.
  11. Mohanraj K, Karthikeyan BS, Vivek-Ananth RP, Chand RB, Aparna SR, Mangalapandi P, Samal A. IMPPAT: A curated database of I ndian M edicinal P lants, P hytochemistry A nd T herapeutics. Scientific reports. 2018 Mar 12;8(1):4329.
  12. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L. PubChem in 2021: new data content and improved web interfaces. Nucleic acids research. 2021 Jan 8;49(D1):D1388-95.
  13. Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7:42717. http://dx.doi.org/10.1038/srep42717
  14. Yang H, Lou C, Sun L, Li J, Cai Y, Wang Z, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067–9. http://dx.doi.org/10.1093/bioinformatics/bty707
  15. Kondapuram SK, Sarvagalla S, Coumar MS. Docking-based virtual screening using PyRx Tool: autophagy target Vps34 as a case study. InMolecular Docking for Computer-Aided Drug Design 2021 Jan 1 (pp. 463-477).
  16. Arshad Z, Alturkistani A, Brindley D, Lam C, Foley K, Meinert E. Tools for the diagnosis of herpes simplex virus 1/2: systematic review of studies published between 2012 and 2018. JMIR public health and surveillance. 2019 May 23;5(2):e14216.
  17. Karasneh GA, Shukla D. Herpes simplex virus infects most cell types in vitro: clues to its success. Virol J. 2011 Oct 26;8:481. doi: 10.1186/1743-422X-8-481. PMID: 22029482; PMCID: PMC3223518.
  18. Candice L W, Django S, Margaret E B. The role of herpes simplex virus-1 thymidine kinase alanine 168 in substrate specificity. Open Biochem J. 2008;2:60-6. doi: 10.2174/1874091X00802010060. Epub 2008 May 9. PMID: 18949076; PMCID: PMC2570551.

Ahead of Print Subscription Original Research
Volume
Received 09/09/2024
Accepted 30/09/2024
Published 11/12/2024