[{“box”:0,”content”:”[if 992 equals=”Open Access”]n
n
Open Access
nn
n
n[/if 992]n
n
n
n
n

n
Shivangi, Jai Prakash Muyal,
n
- n t
n
n
n[/foreach]
n
n[if 2099 not_equal=”Yes”]n
- [foreach 286] [if 1175 not_equal=””]n t
- Assistant Professor, Assistant Professor Department of Biotechnology, School of Biotechnology, Gautam Buddha University, Department of Biotechnology, School of Biotechnology, Gautam Buddha University Uttar Pradesh, Uttar Pradesh India, India
n[/if 1175][/foreach]
n[/if 2099][if 2099 equals=”Yes”][/if 2099]n
Abstract
nLung fibrosis poses a serious risk to one’s health since it might result in respiratory failure due to an abnormal accumulation of fibrotic tissue in the lungs. Epigenetic mechanisms, such as histone changes, DNA methylation, and non-coding RNAs, closely control gene expression patterns and cellular processes associated with lung fibrosis. Anomalies in DNA methylation patterns connected to changes in gene expression profiles and disturbances in fibrotic signalling pathways are potential targets for diagnosis and treatment in fibrotic lungs. A portion of the abnormal gene expression patterns and decreased cellular activity observed in fibrotic lungs can be explained by hepatocellular dysregulation. Non-coding RNAs have an impact on crucial signalling pathways that cause lung fibrosis to develop. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are two examples of these routes. Collaboration between medical professionals, researchers, regulators, and the advancement of pulmonary fibrosis precision medicine therapies depends on industry actors. Recent developments in the CRISPR-Cas9 system have enabled epigenetic editing. This study examines the benefits and drawbacks of using these modifications for medical treatment. A few concerns need to be fixed before epigenetic therapies may be used effectively in clinical settings. Delivery, specificity, off-target repercussions and morality are some of these challenges. The goal of this review is to enhance patient outcomes and quality of life by investigating the intricate relationship between epigenetic modifications and the biology of lung fibrosis.
n
Keywords: Lung fibrosis, Epigenetics, DNA methylation, Histone modifications, non-coding RNAs, Therapeutic intervention.
n[if 424 equals=”Regular Issue”][This article belongs to Research & Reviews : A Journal of Medical Science and Technology(rrjomst)]
n
n
n
n
n
nn[if 992 equals=”Open Access”] Full Text PDF Download[/if 992] n
nn[if 379 not_equal=””]n
Browse Figures
n
n
n[/if 379]n
References
n[if 1104 equals=””]n
- Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ. The processes and mechanisms of cardiac and pulmonary fibrosis. Frontiers in physiology. 2017 Oct 12;8:777.
- Lee JY, Yoon SH, Goo JM, Park J, Lee JH. Association between body fat decrease during the first year after diagnosis and the prognosis of idiopathic pulmonary fibrosis: CT-based body composition analysis. Respir Res. 2024;25(1). doi:10.1186/S12931-024-02712-6
- Savin IA, Zenkova MA, Sen’kova A V. Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci. 2022;23(23). doi:10.3390/ijms232314959
- Macneal K, Schwartz DA. The genetic and environmental causes of pulmonary fibrosis. Proceedings of the American Thoracic Society. 2012 Jul 15;9(3):120-5.doi:10.1513/pats.201112-055AW
- Gandhi S, Tonelli R, Murray M, Samarelli AV, Spagnolo P. Environmental Causes of Idiopathic Pulmonary Fibrosis. International Journal of Molecular Sciences. 2023 Nov 18;24(22):16481. doi:10.3390/IJMS242216481
- Rivera-Ortega P, Molina-Molina M. Interstitial lung diseases in developing countries. Ann Glob Health. 2019;85(1). doi:10.5334/aogh.2414
- Ye Z, Hu Y. TGF-β1: Gentlemanly orchestrator in idiopathic pulmonary fibrosis (Review). Int J Mol Med. 2021;48(1). doi:10.3892/ijmm.2021.4965
- Barros A, Oldham J, Noth I. Genetics of Idiopathic Pulmonary Fibrosis. American Journal of the Medical Sciences. 2019;357(5). doi:10.1016/j.amjms.2019.02.009
- Yang I V., Schwartz DA. Epigenetics of idiopathic pulmonary fibrosis. Translational Research. 2015;165(1). doi:10.1016/j.trsl.2014.03.011
- Raghu G, Collard HR, Egan JJ, et al. An Official ATS/ERS/JRS/ALAT Statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med. 2011;183(6). doi:10.1164/rccm.2009-040GL
- Wylam ME, Sathish V, VanOosten SK, et al. Mechanisms of cigarette smoke effects on human airway smooth muscle. PLoS One. 2015;10(6). doi:10.1371/journal.pone.0128778
- Redington AE. Airway fibrosis in asthma: Mechanisms, consequences, and potential for therapeutic intervention. Monaldi Archives for Chest Disease. 2000;55(4).
- Lennartsson A, Ekwall K. Histone modification patterns and epigenetic codes. Biochim Biophys Acta Gen Subj. 2009;1790(9). doi:10.1016/j.bbagen.2008.12.006
- Ghavifekr Fakhr M, Farshdousti Hagh M, Shanehbandi D, Baradaran B. DNA Methylation Pattern as Important Epigenetic Criterion in Cancer. Genet Res Int. 2013;2013. doi:10.1155/2013/317569
- Peschansky VJ, Wahlestedt C. Non-coding RNAs as direct and indirect modulators of epigenetic regulation. Epigenetics. 2014;9(1). doi:10.4161/epi.27473
- Yang I V., Schwartz DA. Epigenetic mechanisms and the development of asthma. Journal of Allergy and Clinical Immunology. 2012;130(6). doi: 10.1016/j.jaci.2012.07.052
- Velagacherla V, Mehta CH, Nayak Y, Nayak UY. Molecular pathways and role of epigenetics in the idiopathic pulmonary fibrosis. Life Sci. 2022;291. doi:10.1016/j.lfs.2021.120283
- Boucherat O, Vitry G, Trinh I, Paulin R, Provencher S, Bonnet S. The cancer theory of pulmonary arterial hypertension. Pulm Circ. 2017;7(2). doi:10.1177/2045893217701438
- Selman M, López-Otín C, Pardo A. Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis. European Respiratory Journal. 2016;48(2). doi:10.1183/13993003.00398-2016
- Sehgal M, Jakhete SM, Manekar AG, Sasikumar S. Specific epigenetic regulators serve as potential therapeutic targets in idiopathic pulmonary fibrosis. Heliyon. 2022;8(8). doi:10.1016/j.heliyon.2022.e09773
- Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene. 2023 Apr 5;859:147142. doi:10.1016/j.gene.2022.147142
- Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacological research. 2021 Nov 1;173:105910. doi:10.1016/j.phrs.2021.105910
- Jeltsch A, Broche J, Bashtrykov P. Molecular processes connecting DNA methylation patterns with DNA methyltransferases and histone modifications in mammalian genomes. Genes (Basel). 2018;9(11). doi:10.3390/genes9110566
- Liu Y, Leng P, Liu Y, Guo J, Zhou H. Crosstalk between Methylation and ncRNAs in Breast Cancer: Therapeutic and Diagnostic Implications. Int J Mol Sci. 2022;23(24). doi:10.3390/ijms232415759
- Lu J, Huang Y, Zhang X, Xu Y, Nie S. Noncoding RNAs involved in DNA methylation and histone methylation, and acetylation in diabetic vascular complications. Pharmacol Res. 2021;170. doi:10.1016/j.phrs.2021.105520
- Sanders YY, Ambalavanan N, Halloran B, et al. Altered DNA methylation profile in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2012;186(6). doi:10.1164/rccm.201201-0077OC
- Neary R, Watson CJ, Baugh JA. Epigenetics and the overhealing wound: The role of DNA methylation in fibrosis. Fibrogenesis Tissue Repair. 2015;8(1). doi:10.1186/s13069-015-0035-8
- Yang I V., Pedersen BS, Rabinovich E, et al. Relationship of DNA methylation and gene expression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2014;190(11). doi:10.1164/rccm.201408-1452OC
- Duan J, Zhong B, Fan Z, et al. DNA methylation in pulmonary fibrosis and lung cancer. Expert Rev Respir Med. 2022;16(5). doi:10.1080/17476348.2022.2085091
- Brown TA, Lee JW, Holian A, et al. Alterations in DNA methylation corresponding with lung inflammation and as a biomarker for disease development after MWCNT exposure. Nanotoxicology. 2016;10(4). doi:10.3109/17435390.2015.1078852
- Jiang Y, Fu J, Du J, et al. DNA methylation alterations and their potential influence on macrophage in periodontitis. Oral Dis. 2022;28(2). doi:10.1111/odi.13654
- Jones PA. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7). doi:10.1038/nrg3230
- Razin A, Riggs AD. DNA Methylation and gene function. Science (1979). 1980;210(4470). doi:10.1126/science.6254144
- Zhang X, Hu M, Lyu X, Li C, Thannickal VJ, Sanders YY. DNA methylation regulated gene expression in organ fibrosis. Biochim Biophys Acta Mol Basis Dis. 2017;1863(9). doi:10.1016/j.bbadis.2017.05.010
- Marzoog BA. Local Lung Fibroblast Autophagy in the Context of Lung Fibrosis Pathogenesis. Curr Respir Med Rev. 2022;19(1). doi:10.2174/1573398×19666221130141600
- Garner I. DNA methylation in lung fibroblasts and its role in pulmonary fibrosis. Doctoral thesis, UCL (University College London) . Published online April 28, 2016. https://discovery.ucl.ac.uk/id/eprint/1478244/
- Limjunyawong N, Mitzner W, Horton MR. A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep. 2014;2(2). doi:10.1002/phy2.249
- Smith ZD, Meissner A. DNA methylation: Roles in mammalian development. Nat Rev Genet. 2013;14(3). doi:10.1038/nrg3354
- Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther. 2015;147. doi:10.1016/j.pharmthera.2014.11.006
- Rosas IO, Yang I V. The promise of epigenetic therapies in treatment of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med. 2013;187(4). doi:10.1164/rccm.201212-2272ED
- Bhan A, Deb P, Mandal SS. Epigenetic code: histone modification, gene regulation, and chromatin dynamics. Gene regulation, epigenetics and hormone signaling. 2017 Jul 12:29-58.
- Liu Y, Li H, Xiao T, Lu Q. Epigenetics in immune-mediated pulmonary diseases. Clin Rev Allergy Immunol. 2013;45(3). doi:10.1007/s12016-013-8398-3
- Kouzarides T. Chromatin Modifications and Their Function. Cell. 2007;128(4). doi:10.1016/j.cell.2007.02.005
- Li X, Feng C, Peng S. Epigenetics alternation in lung fibrosis and lung cancer. Front Cell Dev Biol. 2022;10. doi:10.3389/fcell.2022.1060201
- Korfei M, Mahavadi P, Guenther A. Targeting Histone Deacetylases in Idiopathic Pulmonary Fibrosis: A Future Therapeutic Option. Cells. 2022;11(10). doi:10.3390/cells11101626
- Hadjicharalambous MR, Lindsay MA. Idiopathic pulmonary fibrosis: Pathogenesis and the emerging role of long non-coding RNAs. Int J Mol Sci. 2020;21(2). doi:10.3390/ijms21020524
- Omote N, Sauler M. Non-coding RNAs as Regulators of Cellular Senescence in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease. Front Med (Lausanne). 2020;7. doi:10.3389/fmed.2020.603047
- Kopp F, Mendell JT. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell. 2018;172(3). doi:10.1016/j.cell.2018.01.011
- Rajasekaran S, Rajaguru P, Sudhakar Gandhi PS. MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol. 2015;6(NOV). doi:10.3389/fphar.2015.00254
- Li H, Zhao X, Shan H, Liang H. MicroRNAs in idiopathic pulmonary fibrosis: involvement in pathogenesis and potential use in diagnosis and therapeutics. Acta Pharm Sin B. 2016;6(6). doi:10.1016/j.apsb.2016.06.010
- Saadat S, Noureddini M, Mahjoubin-Tehran M, et al. Pivotal Role of TGF-β/Smad Signaling in Cardiac Fibrosis: Non-coding RNAs as Effectual Players. Front Cardiovasc Med. 2021;7. doi:10.3389/fcvm.2020.588347
- Bowen T, Jenkins RH, Fraser DJ. MicroRNAs, transforming growth factor beta-1, and tissue fibrosis. Journal of Pathology. 2013;229(2). doi:10.1002/path.4119
- Foulks JM, Parnell KM, Nix RN, et al. Epigenetic Drug Discovery:Targeting DNA Methyltransferases. J Biomol Screen. 2012;17(1):2-17. doi: 10.1177/1087057111421212/ASSET/IMAGES/LARGE/10.1177_1087057111421212-FIG3.JPEG
- Yue Ren, Qinsheng Sun, Zigao Yuan, Yuyang Jiang. Combined inhibition of HDAC and DNMT1 induces p85α/MEK-mediated cell cycle arrest by dual target inhibitor 208 in U937 cells. Chinese Chemical Letters 2019; 30(6), 1233-1236.
- Nie L, Liu Y, Zhang B, Zhao J. Application of Histone Deacetylase Inhibitors in Renal Interstitial Fibrosis. Kidney Diseases. 2020;6(4). doi:10.1159/000505295
- Lyu X, Hu M, Peng J, Zhang X, Sanders YY. HDAC inhibitors as antifibrotic drugs in cardiac and pulmonary fibrosis. Ther Adv Chronic Dis. 2019;10. doi:10.1177/2040622319862697
- Kang JG, Park JS, Ko JH, Kim YS. Regulation of gene expression by altered promoter methylation using a CRISPR/Cas9-mediated epigenetic editing system. Sci Rep. 2019;9(1). doi:10.1038/s41598-019-48130-3
- Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines. 2023;11(4). doi:10.3390/biomedicines11041047
- Pflueger C, Swain T, Lister R. Harnessing targeted DNA methylation and demethylation using dCas9. Essays Biochem. 2019;63(6). doi:10.1042/EBC20190029
- Hilton IB, D’Ippolito AM, Vockley CM, et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. 2015;33(5). doi:10.1038/nbt.3199
nn[/if 1104][if 1104 not_equal=””]n
- [foreach 1102]n t
- [if 1106 equals=””], [/if 1106][if 1106 not_equal=””],[/if 1106]
n[/foreach]
n[/if 1104]
nn
nn[if 1114 equals=”Yes”]n
n[/if 1114]
n
n

n
Research & Reviews : A Journal of Medical Science and Technology
n
n
n
n
n
n
| Volume | ||
| [if 424 equals=”Regular Issue”]Issue[/if 424][if 424 equals=”Special Issue”]Special Issue[/if 424] [if 424 equals=”Conference”][/if 424] | ||
| Received | April 2, 2024 | |
| Accepted | April 23, 2024 | |
| Published | August 12, 2024 |
n
n
n
n
n
n nfunction myFunction2() {nvar x = document.getElementById(“browsefigure”);nif (x.style.display === “block”) {nx.style.display = “none”;n}nelse { x.style.display = “Block”; }n}ndocument.querySelector(“.prevBtn”).addEventListener(“click”, () => {nchangeSlides(-1);n});ndocument.querySelector(“.nextBtn”).addEventListener(“click”, () => {nchangeSlides(1);n});nvar slideIndex = 1;nshowSlides(slideIndex);nfunction changeSlides(n) {nshowSlides((slideIndex += n));n}nfunction currentSlide(n) {nshowSlides((slideIndex = n));n}nfunction showSlides(n) {nvar i;nvar slides = document.getElementsByClassName(“Slide”);nvar dots = document.getElementsByClassName(“Navdot”);nif (n > slides.length) { slideIndex = 1; }nif (n (item.style.display = “none”));nArray.from(dots).forEach(nitem => (item.className = item.className.replace(” selected”, “”))n);nslides[slideIndex – 1].style.display = “block”;ndots[slideIndex – 1].className += ” selected”;n}n”}]
