Computational Studies on PVDF-HFP/Li-salt Composite Electrolyte for Lithium-ion Batteries

Open Access

Year : 2023 | Volume : | : | Page : –
By

Jyoti Singh

Abhishek Kumar Gupta

Sarvesh Kumar Gupta

Shivani Gupta

Ramesh Kumar Arya

Amarjeet Yadav

  1. Student Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur Uttar Pradesh India
  2. Assistant Professor Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur Uttar Pradesh India
  3. Research Scholar Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur Uttar Pradesh India
  4. Research Scholar Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur Uttar Pradesh India
  5. Research Scholar Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur Uttar Pradesh India
  6. Post-Doc Fellow Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow Uttar Pradesh India

Abstract

Density Functional Theory (DFT) is very useful method to study the geometrical, electronic, and other important properties of molecules. Parameters and required data of Poly(vinylidene fluoride-co- hexachloropropylene) (PVDF-HFP), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and polymer electrolyte (PVDF-HFP + LiTFSI) are calculated with the B3LYP functional and 6-31+G(d,p) and 6- 31++G(d,p) basis sets using Gaussian03. The optimized geometry, total energy, ionization potential, electron affinity, energy gap, and electronegativity were calculated. In result, the energy gap decreases while electron affinity increases of polymer electrolyte. Mulliken Charge distribution analysis done. IR studies shows the dominating nature of PVDF-HFP.

Keywords: DFT, HOMO-LUMO, Ionization Potential, Electron Affinity, Bandgap

How to cite this article: Jyoti Singh, Abhishek Kumar Gupta, Sarvesh Kumar Gupta, Shivani Gupta, Ramesh Kumar Arya, Amarjeet Yadav. Computational Studies on PVDF-HFP/Li-salt Composite Electrolyte for Lithium-ion Batteries. Journal of Nanoscience, NanoEngineering & Applications. 2023; ():-.
How to cite this URL: Jyoti Singh, Abhishek Kumar Gupta, Sarvesh Kumar Gupta, Shivani Gupta, Ramesh Kumar Arya, Amarjeet Yadav. Computational Studies on PVDF-HFP/Li-salt Composite Electrolyte for Lithium-ion Batteries. Journal of Nanoscience, NanoEngineering & Applications. 2023; ():-. Available from: https://journals.stmjournals.com/jonsnea/article=2023/view=91615

Full Text PDF Download

References

1. Chawla, N., Bharti, N., & Singh, S., “Recent advances in non-flammable electrolytes for safer lithium-ion batteries,” Batteries, pp. 1-26, 2018.
2. Gonçalves, R., Miranda, D., Almeida, A. M., Silva, M. M., Meseguer-Dueñas, J. M., Ribelles, J. L. G., Costa, C. M., “Solid polymer electrolytes based on lithium bis (trifluoromethanesulfonyl)imide/poly(vinylidene fluoride -co-hexafluoropropylene) for safer rechargeable lithium-ion batteries,” Sustainable Materials and Technologies, 2018.
3. Tripathi, A. K., & Singh, R. K., “Lithium salt assisted enhenced performance of supercapacitor based on quasi solid-state electrolyte,” Journal of Saudi Chemical Society, 2018.
4. C.M. Costa, M.M. Silva, S. Lanceros-Méndez, “Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications,” RSC Advances , pp. 11404- 11417, 2013.
5. A.M. Elmér, P. Jannasch, “Polymer electrolyte membranes by in situ polymerization of poly(ethylene carbonate-co-ethylene oxide) macromonomers in blends with poly(vinylidene fluoride-co-hexafluoropropylene),” Journal of Polymer Science Part B: Polymer Physics, pp. 79- 90, 2007.
6. P. Tuhania, and P. K. Singh., “High performance polymer,” pp. 911–917, 2018.
7. X. Wang, C. Xiao, H. Liu, Q. Huang, J. Hao, and H. Fu, “Materials (Basel),” 2018.
8. N. Asthana, M. M. Dwivedi, and K. Pandey, in International Journal of Emerging Engineering Research and Technology, 5, pp. 21–27, 2017.
9. X. Wang, C. Xiao, H. Liu, Q. Huang, and H. Fu, J. Appl. Polym. Sci., 135, pp. 1–9, 2018.
10. R. Sarkar and T. K. Kundu, J. Chem. Sci., 130, 1–18, (2018).
11. H. R. I. Vlfv, R. Ri, and D. Duphw, pp. 66–69, 2013.
12. S. P. Jakriya, A. M. Syed, S. K. Pillai, and D. B. Rahim, Mater. Express, pp. 77–84, 2018.
13. C. G. Zhan, J. A. Nichols, and D. A. Dixon, J. Phys. Chem. A, pp. 4184–4195, 2003.
14. W. Wang and H. Fan, “Ferroelectrics,” pp. 41–44, 2010.
15. S. Pal and T. K. Kundu, ISRN Phys. Chem.,pp. 1–16, 2013.
16. R. Mejri, J. Dias, and S. B. Hentati, Eur. Polym. J.,pp. 445–451, 2016.
17. R. Sachdeva, no. Icaet, pp. 13–15, 2016.
18. R. Mathammal, N. Jayamani, and N. Geetha, J. Spectrosc., pp. 1, 2013.
19. Gaussian 03, Revision C.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, (2004).


Open Access Article
Volume
Received May 27, 2021
Accepted June 20, 2021
Published June 20, 2023