Extended Spectrum Beta-Lactamase Production By Acinetobacter baumannii Isolated From Hospital Environment

Year : 2024 | Volume : | : | Page : –
By

Maysa S. ALshukri,

Aalaa F. Abass,

Haneen M.Al-Rubaie,

  1. Professor University of Babylon Hillah Iraq
  2. University of Al-Qadisiyah Al-Qadisiyah Iraq
  3. University of Al-Qadisiyah Al-Qadisiyah Iraq

Abstract

Extended spectrum β-lactamases production was determined by Double Disc synergy test for twenty one bacterial isolates of Acinetobacter bumannii isolated from the hospital environment. This study investigates the prevalence, genetic mechanisms, and clinical implications of ESBL production by A. baumannii. We employed molecular techniques to identify and characterize ESBL genes in clinical isolates, alongside evaluating their susceptibility profiles against a range of antibiotics. These resistant strains were notably associated with severe infections and poor clinical outcomes. The results underscore the urgent need for robust surveillance and novel therapeutic strategies to address the growing threat of ESBL-producing A. baumannii. The results showed 38.09% (8/21) of isolates were ESBL-positive, distributed between 33.33% (4/12) ESBL-positive environmental A. baumannii isolates and 44.44% (4/9) ESBL-positive clinical A. baumannii isolates. Based on statistical analysis, there was no significant correlation found between the isolates source and the production of ESBL (P>0.05).
Detection of gene encoding a class A extended spectrum β-lactamase blaPER-1, Integron genes (int1, and int2 genes) in 19 different environmental and clinical A. baumannii isolates by Polymerase chain reaction technique revealed genes frequencies were 42.1% (8/19), 100% (19/19), and 57.89% (11/19) respectively. The results analysis exhibited that the frequency of genes had no significant differences (P>0.05) between environmental and clinical isolates of A. baumannii.

Keywords: Acinetobacter baumannii, extended spectrum beta-lactamase, blaPER-1 gene, Antibiotic Susceptibility,Genetic Mechanisms.

How to cite this article: Maysa S. ALshukri, Aalaa F. Abass, Haneen M.Al-Rubaie. Extended Spectrum Beta-Lactamase Production By Acinetobacter baumannii Isolated From Hospital Environment. International Journal of Antibiotics. 2024; ():-.
How to cite this URL: Maysa S. ALshukri, Aalaa F. Abass, Haneen M.Al-Rubaie. Extended Spectrum Beta-Lactamase Production By Acinetobacter baumannii Isolated From Hospital Environment. International Journal of Antibiotics. 2024; ():-. Available from: https://journals.stmjournals.com/ijab/article=2024/view=169362



References

  1. Litake, G. M., Ghole, V. S., Niphadkar, K. B., & Joshi, S. G. (2015). Phenotypic ESBL detection in Acinetobacter baumannii: a real challenge. American Journal of Infectious Diseases, 11(3), 48.
  2. Safari F, Safari N, Hasanzadeh A. The adoption of software-as-a-service (SaaS): ranking the determinants. Journal of Enterprise Information Management. 2015 Apr 13;28(3):400-22.
  3. Abd El-Baky, R. M., Farhan, S. M., Ibrahim, R. A., Mahran, K. M., & Hetta, H. F. (2020). Antimicrobial resistance pattern and molecular epidemiology of ESBL and MBL producing Acinetobacter baumannii isolated from hospitals in Minia, Egypt. Alexandria Journal of Medicine, 56(1), 4–13.
  4. Abdar, M. H., Taheri-Kalani, M., Taheri, K., Emadi, B., Hasanzadeh, A., Sedighi, A., Pirouzi, S., & Sedighi, M. (2019). Prevalence of extended-spectrum beta-lactamase genes in Acinetobacter baumannii strains isolated from nosocomial infections in Tehran, Iran. GMS Hygiene and Infection Control, 14.
  5. Sacha, P., Wieczorek, P., Ojdana, D., Czaban, S., Kłosowska, W., Jurczak, A., & Tryniszewska, E. (2012). Susceptibility, phenotypes of resistance, and extended-spectrum β-lactamases in Acinetobacter baumannii strains. Folia Histochemica et Cytobiologica, 50(1), 46–51.
  6. Monfared, A. M., Rezaei, A., Poursina, F., & Faghri, J. (2019). Detection of genes involved in biofilm formation in MDR and XDR Acinetobacter baumannii isolated from human clinical specimens in Isfahan, Iran. Archives of Clinical Infectious Diseases, 14(2).
  7. Almasaudi, S. B. (2018). Acinetobacter spp. as nosocomial pathogens: Epidemiology and resistance features. Saudi Journal of Biological Sciences, 25(3), 586–596.
  8. Al-Kadmy, I. M. S., Ibrahim, S. A., Al-Saryi, N., Aziz, S. N., Besinis, A., & Hetta, H. F. (2020). Prevalence of genes involved in colistin resistance in Acinetobacter baumannii: first report from Iraq. Microbial Drug Resistance, 26(6), 616–622.
  9. Ghaima, K. K. (2018). Distribution of extended spectrum beta-lactamase (ESBL) genes among Acinetobacter baumannii isolated from burn infections. MOJ Cell Sci Rep, 5(3), 42–46.
  10. Peymani, A., Farajnia, S., Nahaei, M. R., Sohrabi, N., Abbasi, L., Ansarin, K., & Azhari, F. (2012). Prevalence of class 1 integron among multidrug-resistant Acinetobacter baumannii in Tabriz, northwest of Iran. Pol J Microbiol, 61(1), 57–60.

 

  1. Goldingay J. Daniel, Volume 30. Zondervan Academic; 2019 Dec 3.
  2. Khan, M. F. K., Rashid, S. S., Ramli, A. N. M., Ishmael, U. C., & Maziz, M. N. H. (2019). Detection of ESBL and MBL in Acinetobacter spp. and Their Plasmid Profile Analysis. Jordan Journal of Biological Sciences, 12(3).
  3. Ranjbar, R., & Farahani, A. (2019). Study of genetic diversity, biofilm formation, and detection of Carbapenemase, MBL, ESBL, and tetracycline resistance genes in multidrug-resistant Acinetobacter baumannii isolated from burn wound infections in Iran. Antimicrobial Resistance & Infection Control, 8(1), 1–11.
  4. Namiganda, V., Mina, Y., Meklat, A., Touati, D., Bouras, N., Barakate, M., & Sabaou, N. (2019). Antibiotic Resistance Pattern of Acinetobacter baumannii strains isolated from different clinical specimens and their sensibility against bioactive molecules produced by Actinobacteria. Arabian Journal for Science and Engineering, 44(7), 6267–6275.
  5. Kaur, A., & Singh, S. (2018). Prevalence of extended spectrum betalactamase (ESBL) and metallobetalactamase (MBL) producing Pseudomonas aeruginosa and Acinetobacter baumannii isolated from various clinical samples. Journal of Pathogens..
  6. Fallah, F., Noori, M., Hashemi, A., Goudarzi, H., Karimi, A., Erfanimanesh, S., & Alimehr, S. (2014). Prevalence of blaNDM, blaPER, blaVEB, blaIMP, and blaVIM genes among Acinetobacter baumannii isolated from two hospitals of Tehran, Iran. Scientifica.
  7. Khoshnood, S., Savari, M., Montazeri, E. A., & Sheikh, A. F. (2020). Survey on genetic diversity, biofilm formation, and detection of colistin resistance genes in clinical isolates of Acinetobacter baumannii. Infection and Drug Resistance, 13, 1547.
  8. Yang, C.-H., Su, P.-W., Moi, S.-H., & Chuang, L.-Y. (2019). Biofilm formation in Acinetobacter Baumannii: genotype-phenotype correlation. Molecules, 24(10), 1849.
  9. Ghasemi, E., Ghalavand, Z., Goudarzi, H., Yeganeh, F., Hashemi, A., Dabiri, H., Mirsamadi, E. S., & Foroumand, M. (2018). Phenotypic and genotypic investigation of biofilm formation in clinical and environmental isolates of Acinetobacter baumannii. Archives of Clinical Infectious Diseases, 13(4).
  10. Sung, J. Y. (2018). Molecular characterization and antimicrobial susceptibility of biofilm-forming Acinetobacter baumannii clinical isolates from Daejeon, Korea. Korean Journal of Clinical Laboratory Science, 50(2), 100–109
  11. Bardbari, A. M., Arabestani, M. R., Karami, M., Keramat, F., Alikhani, M. Y., & Bagheri, K. P. (2017). Correlation between ability of biofilm formation with their responsible genes and MDR patterns in clinical and environmental Acinetobacter baumannii isolates. Microbial Pathogenesis, 108, 122–128.
  12. Qi, L., Li, H., Zhang, C., Liang, B., Li, J., Wang, L., Du, X., Liu, X., Qiu, S., & Song, H. (2016). Relationship between antibiotic resistance, biofilm formation, and biofilm-specific resistance in Acinetobacter baumannii. Frontiers in Microbiology, 7, 483.
  13. Mahmood, S. S. (2022). The Prevalence of Integron Classes Genes Among A. Baumannii Isolates. Iraqi Journal of Science, 1955–1960.
  14. Al-Shaabani, M. J. M., Turki, A. M., & Al-Mathkhury, H. J. F. (2020). The Antibiofilm Efficacy of Gold Nanoparticles Against Acinetobacter baumannii: none. Iraqi Journal of Science, 749–753.
  15. AL-Asady SI. Association of serum chemokine receptor 1and chemokine receptor 5 with COVID-19 severity(Doctoral dissertation, University of Kerbala).
  16. Xu, L., Deng, S., Wen, W., Tang, Y., Chen, L., Li, Y., Zhong, G., Li, J., Ting, W., & Fu, B. (2020). Molecular typing, and integron and associated gene cassette analyses in Acinetobacter baumannii strains isolated from clinical samples. Experimental and Therapeutic Medicine, 20(3), 1943–1952.
  17. Halaji, M., Rezaei, A., Zalipoor, M., & Faghri, J. (2018). Investigation of class I, II, and III integrons among Acinetobacter Baumannii isolates from hospitalized patients in Isfahan, Iran. Oman Medical Journal, 33(1), 37.
  18. Amin, M., Navidifar, T., Shooshtari, F. S., & Goodarzi, H. (2019). Association of the genes encoding metallo-β-lactamase with the presence of integrons among multidrug-resistant clinical isolates of Acinetobacter baumannii. Infection and Drug Resistance, 12, 1171.
  19. Zeighami, H., Valadkhani, F., Shapouri, R., Samadi, E., & Haghi, F. (2019). Virulence characteristics of multidrug resistant biofilm forming Acinetobacter baumannii isolated from intensive care unit patients. BMC Infectious Diseases, 19(1), 1–9.
  20. Ardeshiri, N., Nasrollahi, M. Goudarzi, H., Goudarzi, M., Ghalavand, Z., and Dadashi, M. (2017). The prevalence of integron 1, 2 and 3 classes in Acinetobacter baumanii clinical isolates from Sari Hospitals. Iran. Research in Medicine. 41, 217-225
  21. Deylam Salehi, M., Ferdosi-Shahandashti, E., Yahyapour, Y., Khafri, S., Pournajaf, A., & Rajabnia, R. (2017). Integron-Mediated Antibiotic Resistance in Acinetobacter baumannii Isolated from Intensive Care Unit Patients, Babol, North of Iran. BioMed Research International, 2017. https://doi.org/10.1155/2017/7157923

 


Ahead of Print Subscription Original Research
Volume
Received August 14, 2024
Accepted August 23, 2024
Published August 28, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.