Recent Applications and Influences of Artificial Intelligence (AI) In Chemical and Allied Sciences

Year : 2024 | Volume :01 | Issue : 02 | Page : 22-48
By

Anindya S. Manna,

Antara Roy,

Rajjakfur Rahaman,

Prof Dilip Kumar Maiti,

  1. Senior Research Scholar Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata West Bengal India
  2. Senior Research Scholar Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata West Bengal India
  3. Postdoctoral Research Scholar Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata West Bengal India
  4. Professor Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata West Bengal India

Abstract

Artificial Intelligence (AI), the future tool of mankind that can revolutionise scientific research by making it faster, add more efficiently and accurately. During the pandemic situation, the scientific community was parted into two distinct groups, the computation-dependent community could easily continue their research work from their resident, while the works of the other group of researchers with lab-oriented research stopped entirely. In this connection use of AI becomes important and applied in various areas of chemistry and biochemistry for helping and enhancement of research towards the drug molecule development, retrosynthetic path finding of the targeted valuable compounds with their property prediction. Also, the possibility of applications of AI went beyond and applied in the food science and nano-technology through its experimental data dependent predictions for a faster and cost-effective research towards real applications. In this short review we discussed covering the different areas of chemistry and biochemistry, how AI is assisting the scientists in advancing these impactful research fields.

Keywords: Machine learning; AI in chemistry; automated research tool; synthetic route design; drug molecule design

[This article belongs to International Journal of Cheminformatics(ijci)]

How to cite this article: Anindya S. Manna, Antara Roy, Rajjakfur Rahaman, Prof Dilip Kumar Maiti. Recent Applications and Influences of Artificial Intelligence (AI) In Chemical and Allied Sciences. International Journal of Cheminformatics. 2024; 01(02):22-48.
How to cite this URL: Anindya S. Manna, Antara Roy, Rajjakfur Rahaman, Prof Dilip Kumar Maiti. Recent Applications and Influences of Artificial Intelligence (AI) In Chemical and Allied Sciences. International Journal of Cheminformatics. 2024; 01(02):22-48. Available from: https://journals.stmjournals.com/ijci/article=2024/view=156671

References

  1. Abedsoltan, H. COVID‐19 and the Chemical Industry: Impacts, Challenges, and Opportunities.  Chem. Technol. Biotechnol.2023; 98 (12): 2789–2797.
  2. Heo, S.; Chan, A. Y.; Diaz Peralta, P.; Jin, L.; Pereira Nunes, C. R.; Bell, M. L. Impacts of the COVID-19 Pandemic on Scientists’ Productivity in Science, Technology, Engineering, Mathematics (STEM), and Medicine Fields.  Soc. Sci. Commun.2022; 9 (1): 1–11p.
  3. Sanderson K. Automation: chemistry shoots for the Moon. Nature 2019; 568(7753): 577–9p.
  4. Porwol L, Kowalski DJ, Henson A, et al. An autonomous chemical robot discovers the rules of inorganic coordination chemistry without prior knowledge. Chem., Int. Ed. Engl. 2020; 59(28): 11256–61p.
  5. Bedard AC, Adamo A, Aroh KC, et al. Reconfigurable system for automated optimization of diverse chemical reactions. Science 2018; 361(6408): 1220–5p.
  6. Coley CW, Thomas IIIDA, Lummiss JAM, et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 2019; 365(6453): 1566.
  7. Mullin, R. The Lab of the Future Is Now.  Eng. News2021; 28.
  8. Khatod, R. G., & Sakhale, C. N. Design and Fabrication of Liquid Dispensing Machine Using Automatic Control for Engg. Industry. International journal of innovative technology and exploring engineering (IJITEE)2012; 1(5): 38-44p.
  9. Joshi, R. P.; Kumar, N. Artificial Intelligence for Autonomous Molecular Design: A Perspective. Molecules2021; 26 (22): 6761p.
  10. Dias, A. L.; Rodrigues, T. Large Language Models Direct Automated Chemistry Laboratory. Nature2023; 624 (7992): 530–531p.
  11. Gaulton A, Hersey A, Nowotka M, et al. The ChEMBL database in 2017. Nucleic Acids Res. 2017; 45: 945–954p.
  12. Wang Y, Cheng T, Bryant SH. PubChem BioAssay: a decade’s development toward open high-throughput screening data sharing. SLAS Discov. 2017; 22(6): 655–666p.
  13. Loeffler, H. H.; He, J.; Tibo, A.; Janet, J. P.; Voronov, A.; Mervin, L. H.; Engkvist, O. Reinvent 4: Modern AI–Driven Generative Molecule Design.  Cheminform.2024; 16:1-16p.
  14. Gómez-Bombarelli, R.; Wei, J. N.; Duvenaud, D.; Hernández-Lobato, J. M.; Sánchez-Lengeling, B.; Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T. D.; Adams, R. P.; Aspuru-Guzik, A. Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules. ACS Cent. Sci.2018; 4 (2): 268–276p.
  15. Kai, L.; Wei, Z.; Ming, G. Molecular Design Method Based on New Molecular Representation and Variational Auto-Encoder. In Natural Language Processing, Information Retrieval and AI; Academy and Industry Research Collaboration Center (AIRCC), 2023.
  16. Jabbar, R.; Jabbar, R.; Kamoun, S. Recent Progress in Generative Adversarial Networks Applied to Inversely Designing Inorganic Materials: A Brief Review.  Mater. Sci.2022, 213, 111612p.
  17. Gupta, A.; Müller, A. T.; Huisman, B. J. H.; Fuchs, J. A.; Schneider, P.; Schneider, G. Generative Recurrent Networks for DE NovoDrug Design.  Inform. 2018; 37:1–2p.
  18. Liu, X.; Ye, K.; van Vlijmen, H. W. T.; IJzerman, A. P.; van Westen, G. J. P. DrugEx v3: Scaffold-Constrained Drug Design with Graph Transformer-Based Reinforcement Learning.  Cheminform.2023; 15 (1): 1-14p.
  19. Olivecrona, M.; Blaschke, T.; Engkvist, O.; Chen, H. Molecular De-Novo Design through Deep Reinforcement Learning.  Cheminform.2017; 9 (1): 1-14p.
  20. Blaschke, T.; Arús-Pous, J.; Chen, H.; Margreitter, C.; Tyrchan, C.; Engkvist, O.; Papadopoulos, K.; Patronov, A. REINVENT 2.0: An AI Tool for DE Novo Drug Design.  Chem. Inf. Model.2020; 60 (12): 5918–5922p.
  21. Ross, J.; Belgodere, B.; Chenthamarakshan, V.; Padhi, I.; Mroueh, Y.; Das, P. Large-Scale Chemical Language Representations Capture Molecular Structure and Properties.  Mach. Intell.2022; 4 (12): 1256–1264p.
  22. He, J.; Nittinger, E.; Tyrchan, C.; Czechtizky, W.; Patronov, A.; Bjerrum, E. J.; Engkvist, O. Transformer-Based Molecular Optimization beyond Matched Molecular Pairs.  Cheminform.2022; 14 (1): 1-14p.
  23. Shi, C.; Xu, M.; Zhu, Z.; Zhang, W.; Zhang, M.; Tang, J. GraphAF: A Flow-Based Autoregressive Model for Molecular Graph Generation. arXiv [cs.LG], 2020.
  24. Plehiers, P. P.; Coley, C. W.; Gao, H.; Vermeire, F. H.; Dobbelaere, M. R.; Stevens, C. V.; Van Geem, K. M.; Green, W. H. Artificial Intelligence for Computer-Aided Synthesis in Flow: Analysis and Selection of Reaction Components.  Chem. Eng.2020; 2: 1-19p.
  25. Yang, L.; Zhang, Z.; Song, Y.; Hong, S.; Xu, R.; Zhao, Y.; Zhang, W.; Cui, B.; Yang, M.-H. Diffusion Models: A Comprehensive Survey of Methods and Applications, arXiv. 2022.
  26. Hoogeboom, E.; Satorras, V. G.; Vignac, C.; Welling, M. Equivariant Diffusion for Molecule Generation in 3D.2022.
  27. Xu, M.; Powers, A.; Dror, R.; Ermon, S.; Leskovec, J. Geometric Latent Diffusion Models for 3D Molecule Generation. arXiv. 2023; 1-18p.
  28. Luu, R. K.; Wysokowski, M.; Buehler, M. J. Generative Discovery of de NovoChemical Designs Using Diffusion Modeling and Transformer Deep Neural Networks with Application to Deep Eutectic Solvents.  Phys. Lett. 2023; 122 (23): 234103-(1-9).
  29. Bradshaw, J.; Paige, B.; Kusner, M. J.; Segler, M. H. S.; Hernández-Lobato, J. M. A Model to Search for Synthesizable Molecules.2019; 1-20p.
  30. Bilodeau, C.; Jin, W.; Jaakkola, T.; Barzilay, R.; Jensen, K. F. Generative Models for Molecular Discovery: Recent Advances and Challenges. Wiley Interdiscip. Rev. Comput. Mol. Sci.2022; 12 (5): 1-17p.
  31. Polykovskiy, D.; Zhebrak, A.; Sanchez-Lengeling, B.; Golovanov, S.; Tatanov, O.; Belyaev, S.; Kurbanov, R.; Artamonov, A.; Aladinskiy, V.; Veselov, M.; et al. Molecular Sets (MOSES): A Benchmarking Platform for Molecular Generation Models.  Pharmacol.2020; 11: 1-10p.
  32. Brown, N.; Fiscato, M.; Segler, M. H. S.; Vaucher, A. C. GuacaMol: Benchmarking Models for de Novo Molecular Design.  Chem. Inf. Model.2019; 59 (3): 1096–1108p.
  33. Ivanenkov, Y. A.; Polykovskiy, D.; Bezrukov, D.; Zagribelnyy, B.; Aladinskiy, V.; Kamya, P.; Aliper, A.; Ren, F.; Zhavoronkov, A. Chemistry42: An AI-Driven Platform for Molecular Design and Optimization.  Chem. Inf. Model.2023; 63 (3): 695–701p.
  34. Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. Computer-Assisted Retrosynthesis Based on Molecular Similarity. ACS Cent. Sci.2017; 3 (12): 1237–1245p.
  35. Judson P. Knowledge-Based Expert Systems in Chemistry: Not Counting on Computers. Cambridge: Royal Society of Chemistry; 2009.
  36. Sun Y, Sahinidis NV. Computer-Aided Retrosynthetic Design: Fundamentals, Tools, and Outlook.  Opin. Chem. Eng.2022; 35: 100721p.
  37. Corey EJ, Wipke WT, Cramer IIIRD, et al. Computer-Assisted Synthetic Analysis. Facile Man-Machine Communication of Chemical Structure by Interactive Computer Graphics.  Am. Chem. Soc. 1972; 94(2): 421–430p.
  38. Johnson PY, Burnstein I, Crary J, et al. Designing an Expert System for Organic Synthesis: The Need for Strategic Planning.  ACS Symposium Series; Washington, DC: American Chemical Society 1989; 102–123p.
  39. Gelernter HL, Sanders AF, Larsen DL, et al. Empirical Explorations of SYNCHEM: The Methods of Artificial Intelligence Are Applied to the Problem of Organic Synthesis Route Discovery. Science1977; 197(4308): 1041–1049p.
  40. Warr WA. A Short Review of Chemical Reaction Database Systems, Computer‐aided Synthesis Design, Reaction Prediction and Synthetic Feasibility.  Inform.2014; 33(6-7): 469–476p.
  41. Cook A, Johnson AP, Law J, et al. Computer‐aided Synthesis Design: 40 Years On. Wiley Interdiscip. Rev. Comput. Mol. Sci.2012; 2(1): 179–107p.
  42. Latendresse M, Malerich JP, Herson J, et al. SynRoute: A Retrosynthetic Planning Software.  Chem. Inf. Model. 2023; 63(17): 5484–5495p.
  43. Wang Y, Pang C, Wang Y, et al. Retrosynthesis Prediction with an Interpretable Deep-Learning Framework Based on Molecular Assembly Tasks.  Commun.2023; 14(1): 1–15p.
  44. Zhong Z, Song J, Feng Z, et al. Recent advances in deep learning for retrosynthesis. Wiley Interdisciplinary Reviews. Comput. Mol. Sci. 2024; 14(1): 1-27p.
  45. Cadeddu, A.; Wylie, E. K.; Jurczak, J.; Wampler-Doty, M.; Grzybowski, B. A. Organic Chemistry as a Language and the Implications of Chemical Linguistics for Structural and Retrosynthetic Analyses.  Chem. Int. Ed Engl.2014; 53 (31): 8108–8112p.
  46. Proudfoot, J. R. Molecular Complexity and Retrosynthesis.  Org. Chem.2017; 82 (13): 6968–6971p.
  47. Corey, E. J. General Methods for the Construction of Complex Molecules. Pure Appl. Chem.1967; 14 (1): 19–38p.
  48. Rogers D, Hahn M. Extended-Connectivity Fingerprints.  Chem. Inf. Model.2010; 50(5): 742–754p.
  49. Braams BJ, Bowman JM. Permutationally Invariant Potential Energy Surfaces in High Dimensionality.  Rev. Phys. Chem.2009; 28(4): 577–606p.
  50. Schwaller P, Laino T, Gaudin T, et al. Molecular Transformer: A Model for Uncertainty-Calibrated Chemical Reaction Prediction. ACS Cent. Sci.2019; 5(9): 1572–1583p.
  51. Lin K, Xu Y, Pei J, et al. Automatic Retrosynthetic Route Planning Using Template-Free Models.  Sci.2020; 11(12): 3355–3364p.
  52. Wei JN, Duvenaud D, Aspuru-Guzik A. Neural Networks for the Prediction of Organic Chemistry Reactions. ACS Cent. Sci.2016; 2(10): 725–732p.
  53. Segler MHS, Waller MP. Neural‐symbolic Machine Learning for Retrosynthesis and Reaction Prediction. Chemistry (Weinheim an Der Bergstrasse, Germany).2017; 23(25): 5966–5971p.
  54. Coley CW, Rogers L, Green WH, et al. SCScore: Synthetic Complexity Learned from a Reaction Corpus.  Chem. Inf. Model.2018; 58(2): 252–261p.
  55. Segler MHS, Preuss M, Waller MP. Planning Chemical Syntheses with Deep Neural Networks and Symbolic AI. Nature2018; 555(7698): 604–610p.
  56. Thakkar A, Kogej T, Reymond JL, et al. Datasets and Their Influence on the Development of Computer Assisted Synthesis Planning Tools in the Pharmaceutical Domain.  Sci.2020; 11(1): 154–168p.
  57. Jiang Y, Yu Y, Kong M, et al. Artificial Intelligence for Retrosynthesis Prediction. Engineering (Beijing)2023; 25: 32–50p.
  58. Jeong J, Lee N, Shin Y, et al. Intelligent Generation of Optimal Synthetic Pathways Based on Knowledge Graph Inference and Retrosynthetic Predictions Using Reaction Big Data.  Taiwan Inst. Chem. Eng.2022; 130: 103982p.
  59. Szymkuc S, Gajewska EP, Klucznik T, et al. Computer-assisted synthetic planning: the end of the beginning. Chem. Int. Ed. 2016; 55(20): 5904-5937p.
  60. de Almeida, A. F.; Moreira, R.; Rodrigues, T. Synthetic Organic Chemistry Driven by Artificial Intelligence.  Rev. Chem.2019; 3 (10): 589–604p.
  61. Kowalik M, Gothard CM, Drews AM, et al. Parallel optimization of synthetic pathways within the network of organic chemistry. Chem. Int. Ed. 2012; 51(32): 7928-7932p.
  62. Bort W, Baskin II, Gimadiev T, et al. Discovery of novel chemical reactions by deep generative recurrent neural network. Rep. 2021; 11(1): 1-15p.
  63. Nam J, Kim J: Linking the Neural Machine Translation and the Prediction of Organic Chemistry Reactions. 2016arXiv:1612.09529. 2016; 1-19p.
  64. Tetko IV, Karpov P, Van Deursen R, et al. State-of-the-art augmented nlp transformer models for direct and single-step retrosynthesis. Commun. 2020; 11(1): 1-11p.
  65. Mo Y, Guan Y, Verma P, et al. Evaluating and clustering retrosynthesis pathways with learned strategy. Sci. 2021; 12(4): 1469-1478p.
  66. Bai R, Zhang C, Wang L, et al. Transfer learning: making retrosynthetic predictions based on a small chemical reaction dataset scale to a new level. Molecules 2020; 25(10): 2357 (1-14)p.
  67. Katare S, Caruthers JM, Delgass WN, et al. An intelligent system for reaction kinetic modeling and catalyst design. Ind Eng Chem Res. 2004; 43(14): 3484-3512p.
  68. Sun, R.; Dai, H.; Li, L.; Kearnes, S.; Dai, B. Energy-Based View of Retrosynthesis. 2020; 1-15p.
  69. Staszak, M. Artificial intelligence in the modeling of chemical reactions kinetics.  Sci. Rev. 2023; 8(1): 51–72p.
  70. Caruthers J, Lauterbach JA, Thomson K, et al. Catalyst design: knowledge extraction from high-throughput experimentation. J Catal. 2003; 216(1-2): 98-109p.
  71. Qureshi R, Irfan M, Gondal TM, et al. AI in Drug Discovery and its Clinical Relevance.  Heliyon 2023; 9(7): e17575p.
  72. Jiménez-Luna J, Grisoni F, Weskamp N, et al. Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opin Drug Discov . 2021; 16(9): 949-59p.
  73. Vemula D, Jayasurya P, Sushmitha V, et al. AI and ML in drug discovery: A comprehensive review. J. Pharm. Sci. 2023; 181: 106324p.
  74. Paul D, Sanap G, Shenoy S, et al. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021; 26(1): 80–93p.
  75. Lavecchia, A. Deep learning in drug discovery: opportunities, challenges and future prospects. Drug Discov. Today 2019; 24(10): 2017-32p.
  76. Liu Z, Roberts RA, Lal-Nag M, et al. AI-based language models powering drug discovery and development. Drug Discov. Today 2021; 26(11): 2593-2607p.
  77. Zhuang D, Ibrahim AK. Deep Learning for Drug Discovery: A Study of Identifying High Efficacy Drug Compounds Using a Cascade Transfer Learning Approach.  Sci. (Basel)2021; 11 (17): 7772p.
  78. Pu L, Naderi M, Liu T, et al. eToxPred: A Machine Learning-Based Approach to Estimate the Toxicity of Drug Candidates. BMC Pharmacol. Toxicol.2019; 20 (1): 1-15p.
  79. You J, McLeod RD, Hu P. Predicting drug-target interaction network using deep learning model. Biol. Chem. 2019; 80: 90–101p.
  80. Niazi SK. The Coming of Age of AI/ML in Drug Discovery, Development, Clinical Testing, and Manufacturing: The FDA Perspectives. Des. Devel. Ther. 2023; 17: 2691-2725p.
  81. Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. Innovation 2021; 2(4): 100179p.
  82. Beneke F, Mackenrodt M.-O. Artificial intelligence and collusion. IIC Int. Rev Int Rev Ind Prop Copyr Law. 2019; 50(1): 109–134p.
  83. Bender A, Cortés-Ciriano I. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 1: Ways to make an impact, and why we are not there yet. Drug Discov. Today 2021; 26(2): 511-524p.
  84. Blanco-González A, Cabezón A, Seco-González A, et al. The role of AI in drug discovery: Challenges, opportunities, and strategies. Pharmaceuticals (Basel, Switzerland) 2023; 16(6): 891p.
  85. Xu Y, Liu X, Cao X, et al. Artificial intelligence: A powerful paradigm for scientific research. The Innovation 2021; 2(4):
  86. Zhuang D, Ibrahim AK. Deep learning for drug discovery: a study of identifying high efficacy drug compounds using a cascade transfer learning approach. Appl. Sci. 2021; 11(17): 7772p.
  87. Stumpfe, D.; Bajorath, J. Current Trends, Overlooked Issues, and Unmet Challenges in Virtual Screening.  Chem. Inf. Model.2020; 60 (9): 4112–4115p.
  88. Schneider, P.; Walters, W. P.; Plowright, A. T.; Sieroka, N.; Listgarten, J.; Goodnow, R. A., Jr; Fisher, J.; Jansen, J. M.; Duca, J. S.; Rush, T. S.; et al. Rethinking Drug Design in the Artificial Intelligence Era.  Rev. Drug Discov.2020; 19 (5): 353–364p.
  89. Boström, J.; Brown, D. G.; Young, R. J.; Keserü, G. M. Expanding the Medicinal Chemistry Synthetic Toolbox.  Rev. Drug Discov.2018; 17 (10): 709–727p.
  90. Strokach, A.; Becerra, D.; Corbi-Verge, C.; Perez-Riba, A.; Kim, P. M. Fast and Flexible Protein Design Using Deep Graph Neural Networks. Cell Syst.2020; 11 (4): 402-411p.
  91. Rynazal R, Fujisawa K, Shiroma H, et al. Leveraging explainable AI for gut microbiome-based colorectal cancer classification. Genome Biol. 2023; 24(1): 1-3p.
  92. Mak, K.-K.; Pichika, M. R. Artificial Intelligence in Drug Development: Present Status and Future Prospects. Drug Discov. Today2019; 24 (3): 773–780p.
  93. Hughes, J. P.; Rees, S.; Kalindjian, S. B.; Philpott, K. L. Principles of Early Drug Discovery.  J. Pharmacol.2011; 162 (6): 1239–1249p.
  94. Katsila, T.; Spyroulias, G. A.; Patrinos, G. P.; Matsoukas, M.-T. Computational Approaches in Target Identification and Drug Discovery.  Struct. Biotechnol. J.2016; 14: 177–184p.
  95. Mohs, R. C.; Greig, N. H. Drug Discovery and Development: Role of Basic Biological Research. Alzheimers Dement. (N. Y.)2017; 3 (4): 651–657p.
  96. Emig, D.; Ivliev, A.; Pustovalova, O.; Lancashire, L.; Bureeva, S.; Nikolsky, Y.; Bessarabova, M. Drug Target Prediction and Repositioning Using an Integrated Network-Based Approach. PLoS One2013; 8 (4): e60618p.
  97. Duch, W.; Swaminathan, K.; Meller, J. Artificial Intelligence Approaches for Rational Drug Design and Discovery.  Pharm. Des.2007; 13 (14): 1497–1508p.
  98. Bain, E. E.; Shafner, L.; Walling, D. P.; Othman, A. A.; Chuang-Stein, C.; Hinkle, J.; Hanina, A. Use of a Novel Artificial Intelligence Platform on Mobile Devices to Assess Dosing Compliance in a Phase 2 Clinical Trial in Subjects with Schizophrenia. JMIR MHealth UHealth2017; 5 (2): e18p.
  99. Perez-Gracia, J. L.; Sanmamed, M. F.; Bosch, A.; Patiño-Garcia, A.; Schalper, K. A.; Segura, V.; Bellmunt, J.; Tabernero, J.; Sweeney, C. J.; Choueiri, T. K.; et al. Strategies to Design Clinical Studies to Identify Predictive Biomarkers in Cancer Research. Cancer Treat. Rev.2017; 53: 79–97p.
  100. Deliberato, R. O.; Celi, L. A.; Stone, D. J. Clinical Note Creation, Binning, and Artificial Intelligence. JMIR Med. Inform.2017; 5 (3): e24p.
  101. Lozano-Diez, A.; Zazo, R.; Toledano, D. T.; Gonzalez-Rodriguez, J. An Analysis of the Influence of Deep Neural Network (DNN) Topology in Bottleneck Feature Based Language Recognition. PLoS One2017; 12 (8): e0182580p.
  102. Aliper, A.; Plis, S.; Artemov, A.; Ulloa, A.; Mamoshina, P.; Zhavoronkov, A. Deep Learning Applications for Predicting Pharmacological Properties of Drugs and Drug Repurposing Using Transcriptomic Data.  Pharm.2016; 13 (7): 2524–2530p.
  103. Kadurin, A.; Nikolenko, S.; Khrabrov, K.; Aliper, A.; Zhavoronkov, A. DruGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico.  Pharm.2017; 14 (9): 3098–3104p.
  104. Ozerov, I. V.; Lezhnina, K. V.; Izumchenko, E.; Artemov, A. V.; Medintsev, S.; Vanhaelen, Q.; Aliper, A.; Vijg, J.; Osipov, A. N.; Labat, I.; et al. In Silico Pathway Activation Network Decomposition Analysis (iPANDA) as a Method for Biomarker Development.  Commun.2016; 7 (1): 1–11p.
  105. Ryu, J. Y.; Kim, H. U.; Lee, S. Y. Deep Learning Improves Prediction of Drug–Drug and Drug–Food Interactions.  Natl. Acad. Sci. U. S. A.2018; 115 (18): E4304-E4311p.
  106. Reddy, A. S.; Zhang, S. Polypharmacology: Drug Discovery for the Future. Expert Rev. Clin. Pharmacol.2013; 6 (1): 41–47p.
  107. Ding H, Wu J, Zhao W, et al. Artificial intelligence in dentistry—A review.  Dent. Med. 2023; 4: 1085251p.
  108. Harel, S.; Radinsky, K. Prototype-Based Compound Discovery Using Deep Generative Models.  Pharm.2018; 15 (10): 4406–4416p.
  109. Chen CC, Wu YF, Aung LM, et al. Automatic recognition of teeth and periodontal bone loss measurement in digital radiographs using deep-learning artificial intelligence. J. Dent. Sci. 2023; 18(3): 1301-1309p.
  110. Shen J, Nicolaou CA. Molecular property prediction: recent trends in the era of artificial intelligence. Drug Discov. Today Technol. 2019; 32: 29-36p.
  111. Zhavoronkov, A. Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry.  Pharm.2018; 15 (10): 4311–4313p.
  112. Walters WP, Barzilay R. Applications of deep learning in molecule generation and molecular property prediction. Acc. Chem. Res. 2020; 54(2): 263-270p.
  113. Deng J, Yang Z, Wang H, et al. A systematic study of key elements underlying molecular property prediction. Nat. Commun. 2023; 14(1): 6395 (1-20)p.
  114. Wang Z, Liu M, Luo Y,et al. Advanced graph and sequence neural networks for molecular property prediction and drug discovery. Bioinform. 2022; 38(9): 2579-2586p.
  115. Wieder O, Kohlbacher S, Kuenemann M, et al. A compact review of molecular property prediction with graph neural networks. Drug Discov. Today Technol. 2020; 37: 1-2p.
  116. Li, Z.; Jiang, M.; Wang, S.; Zhang, S. Deep Learning Methods for Molecular Representation and Property Prediction. Drug Discov. Today2022, 27 (12), 103373p.
  117. Nigam A, Pollice R, Hurley MF, et al. Assigning confidence to molecular property prediction. Expert Opin Drug Discov.  2021; 16(9): 1009-23p.
  118. Heinonen, M.; Shen, H.; Zamboni, N.; Rousu, J. Metabolite Identification and Molecular Fingerprint Prediction through Machine Learning. Bioinformatics2012, 28 (18), 2333–2341p.
  119. Rao J, Zheng S, Lu Y, et al. Quantitative evaluation of explainable graph neural networks for molecular property prediction. Patterns 2022; 3(12): 100628p.
  120. Walters WP, Barzilay R. Critical assessment of AI in drug discovery. Expert Opin Drug Discov. 2021; 16(9): 937-947p.
  121. Yang, C. C. Explainable Artificial Intelligence for Predictive Modeling in Healthcare.  Healthc. Inform. Res.2022; 6 (2): 228–239p.
  122. Wu, H.; Zhao, J. Deep Convolutional Neural Network Model Based Chemical Process Fault Diagnosis.  Chem. Eng.2018; 115: 185–197p.
  123. Shilpa S, Kashyap G, Sunoj RB. Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions. J. Phys. Chem. A 2023; 127(40): 8253-71p.
  124. Zhang XC, Wu CK, Yang ZJ, et al. leveraging unsupervised atomic representation learning for molecular property prediction. Brief. Bioinformatics 2021; 22(6): bbab152p.
  125. Bond A, Mccay K, Lal S. Artificial Intelligence & Clinical Nutrition: what the future might have in store. Clinical nutrition ESPEN 2023.
  126. Hacker, P. A Legal Framework for AI Training Data—from First Principles to the Artificial Intelligence Act. Law Innov. Technol.2021; 13 (2): 257–301p.
  127. Wang, Y.; Xiao, J.; Suzek, T. O.; Zhang, J.; Wang, J.; Bryant, S. H. PubChem: A Public Information System for Analyzing Bioactivities of Small Molecules. Nucleic Acids Res.2009; 37: W623–W633p.
  128. Kim, S.; Thiessen, P. A.; Bolton, E. E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B. A.; et al. PubChem Substance and Compound Databases. Nucleic Acids Res.2016, 44: D1202–D1213p.
  129. Gaulton, A.; Bellis, L. J.; Bento, A. P.; Chambers, J.; Davies, M.; Hersey, A.; Light, Y.; McGlinchey, S.; Michalovich, D.; Al-Lazikani, B.; et al. ChEMBL: A Large-Scale Bioactivity Database for Drug Discovery. Nucleic Acids Res.2012; 40: D1100–D1107.
  130. Holzinger, A.; Langs, G.; Denk, H.; Zatloukal, K.; Müller, H. Causability and Explainability of Artificial Intelligence in Medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov.2019; 9 (4): e1312p.
  131. Maity, S. Identifying Opportunities for Artificial Intelligence in the Evolution of Training and Development Practices.  Manag. Dev.2019; 38 (8): 651–663p.
  132. Salinari A, Machì M, Armas Diaz Y, et al. The Application of Digital Technologies and Artificial Intelligence in Healthcare: An Overview on Nutrition Assessment. Diseases 2023; 11(3): 97p.
  133. Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.; Abedi, V. Artificial Intelligence Transforms the Future of Health Care.  J. Med.2019; 132 (7): 795–801p.
  134. de Moraes Lopes MHB, Ferreira DD, Ferreira AC, et al. Use of artificial intelligence in precision nutrition and fitness. In Artificial Intelligence in Precision Health 2020; 465-496p.
  135. Rashid, J.; Batool, S.; Kim, J.; Wasif Nisar, M.; Hussain, A.; Juneja, S.; Kushwaha, R. An Augmented Artificial Intelligence Approach for Chronic Diseases Prediction.  Public Health2022; 10: 795-801p.
  136. Ramakrishnan R, Xing T, Chen T, et al. Application of AI in Nutrition. arXiv preprint arXiv:2312.11569. 2023.
  137. Kumar P, Sinha R, Shukla P. Artificial intelligence and synthetic biology approaches for human gut microbiome. Crit. Rev. Food Sci. Nutr. 2022; 62(8): 2103-2121p.
  138. Karakan T, Gundogdu A, Alagözlü H, et al. Artificial intelligence-based personalized diet: A pilot clinical study for irritable bowel syndrome. Gut Microbes 2022; 14(1): 2138672-2138674p.
  139. Vilne B, Ķibilds J, Siksna I, et al. Could artificial intelligence/machine learning and inclusion of diet-gut microbiome interactions improve disease risk prediction? Case study: coronary artery disease. Front. microbiol. 2022; 13: 627892p.
  140. Feng J, Liu H, Mai S, et al. Protocol of a parallel, randomized controlled trial on the effects of a novel personalized nutrition approach by artificial intelligence in real world scenario. BMC Public Health 2023; 23(1): 1700p.
  141. Panagoulias DP, Sotiropoulos DN, Tsihrintzis GA. Biomarker-based deep learning for personalized nutrition. In2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI) 2021; 306-313p.
  142. Abdel-Sattar M, Al-Obeed RS, Aboukarima AM, et al. Development of an artificial neural network as a tool for predicting the chemical attributes of fresh peach fruits. Plos one. 2021; 16(7): e0251185p.
  143. Behkami S, Zain SM, Gholami M, et al.Classification of cow milk using artificial neural network developed from the spectral data of single-and three-detector spectrophotometers. Food Chem. 2019; 294: 309-15p.
  144. Matusheski NV, Caffrey A, Christensen L, et al. Diets, nutrients, genes and the microbiome: recent advances in personalised nutrition. Br. J. Nutr. 2021; 126(10): 1489-1497p.
  145. Cai Q, Li J, Li H, et al. BTBUFood-60: Dataset for object detection in food field. In2019 IEEE International Conference on Big Data and Smart Computing 2019; 1-4p.
  146. Dias SB, Oikonomidis Y, Diniz JA, et al. Users’ Perspective on the AI-Based Smartphone PROTEIN App for Personalized Nutrition and Healthy Living: A Modified Technology Acceptance Model (mTAM) Approach. Front. Nutr. 2022; 9: 898031p.
  147. Detopoulou P, Voulgaridou G, Moschos P, et al. Artificial intelligence, nutrition, and ethical issues: A mini-review. Clin. Nutr. Open Sci. 2023; 50: 46-56p.
  148. Miyazawa, T.; Hiratsuka, Y.; Toda, M.; Hatakeyama, N.; Ozawa, H.; Abe, C.; Cheng, T.-Y.; Matsushima, Y.; Miyawaki, Y.; Ashida, K.; et al. Artificial Intelligence in Food Science and Nutrition: A Narrative Review.  Rev.2022, 80 (12), 2288–2300p.
  149. Sacha GM, Varona P. Artificial intelligence in nanotechnology. Nanotechnology. 2013; 24(45): 452002p.
  150. Whitesides, G. M. Nanoscience, Nanotechnology, and Chemistry. Small2005; 1 (2): 172–179p.
  151. Ho, D.; Wang, P.; Kee, T. Artificial Intelligence in Nanomedicine. Nanoscale Horiz2019; 4 (2): 365–377p.
  152. Tsigelny, I. F. Artificial Intelligence in Drug Combination Therapy.  Bioinform.2019; 20 (4): 1434–1448p.
  153. Rani, P.; Dutta, K.; Kumar, V. Artificial Intelligence Techniques for Prediction of Drug Synergy in Malignant Diseases: Past, Present, and Future.  Biol. Med.2022; 144: 105334p.
  154. Neto, O. P. V. Intelligent Computational Nanotechnology: The Role of Computational Intelligence in the Development of Nanoscience and Nanotechnology.  Comput. Theor. Nanosci.2014; 11 (4): 928–944p.
  155. Liu C, Sun J. AI in measurement science. Annu. Rev. Anal. Chem. 2021; 14: 1-9p.
  156. Singh, A. V.; Ansari, M. H. D.; Rosenkranz, D.; Maharjan, R. S.; Kriegel, F. L.; Gandhi, K.; Kanase, A.; Singh, R.; Laux, P.; Luch, A. Artificial Intelligence and Machine Learning in Computational Nanotoxicology: Unlocking and Empowering Nanomedicine.  Healthc. Mater.2020; 9 (17): 1901862p.
  157. Brown KA, Brittman S, Maccaferri N, et al. Machine learning in nanoscience: big data at small scales. Nano Lett. 2019; 20(1): 2-10p.
  158. Liu, C., & Sun, J. AI in measurement science.  Rev. Anal. Chem. 2021; 14:1–19p.
  159. Epps RW, Abolhasani M. Modern nanoscience: Convergence of AI, robotics, and colloidal synthesis. Appl. Phys. Rev. 2021; 8(4): 041316p.
  160. Rawat B, Bist AS, Supriyanti D, et al. AI and Nanotechnology for Healthcare: A survey. APTISI Transactions on Management (ATM) 2023; 7(1): 86-91p.
  161. Adir O, Poley M, Chen G, et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 2020; 32(13): 1901989p.
  162. Wang H, Lee DK, Chen KY, et al. Mechanism-independent optimization of combinatorial nanodiamond and unmodified drug delivery using a phenotypically driven platform technology. ACS nano 2015; 9(3): 3332-3344p.
  163. Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro‐/Nanorobots at Work in Active Drug Delivery.  Funct. Mater.2018; 28 (25): 1706100p.
  164. Tripathi, R.; Kumar, A. Application of Nanorobotics for Cancer Treatment.  Today2018; 5 (3): 9114–9117p.
  165. Glécia Virgolino da Silva Luz; Barros, K. V. G.; Fábio Vladimir Calixto de Araújo; Silva, G. B. da; Pedro Augusto Ferreira da Silva; Condori, R. C. I.; Brasil, L. M. Nanorobotics in Drug Delivery Systems for Treatment of Cancer: A Review.  Mater. Sci. Eng. A.2016; 6 (3): 167-180p.
  166. Mir, U. B.; Sharma, S.; Kar, A. K.; Gupta, M. P. Critical Success Factors for Integrating Artificial Intelligence and Robotics.  Pol. Regul. Gov.2020; 22 (4): 307–331p.
  167. Bahman, Z.; Farhang, M.-R. A Model to Forecast Future Paradigms: Volume 1: Introduction to Knowledge Is Power in Four Dimensions; Apple Academic Press: Includes bibliographical references and index. | Contents: Volume 1. Introduction to knowledge is power in four dimensions, 2019.
  168. Modin O, Fuad N, Abadikhah M, et al. A relationship between phages and organic carbon in wastewater treatment plant effluents. Water Res. X 2022; 16: 100146p.
  169. Cantwell MG, Katz DR, Sullivan JC, et al. Spatial patterns of pharmaceuticals and wastewater tracers in the Hudson River Estuary. Water research 2018; 137: 335-43p.
  170. Long S, Zhao L, Liu H, et al. A Monte Carlo-based integrated model to optimize the cost and pollution reduction in wastewater treatment processes in a typical comprehensive industrial park in China. Sci. Total Environ. 2019; 647: 1-10p.
  171. Jawad J, Hawari AH, Zaidi SJ. Artificial neural network modeling of wastewater treatment and desalination using membrane processes: A review. Chem. Eng. J. 2021; 419: 129540p.
  172. Zhu J, Jiang Z, Feng L. Improved neural network with least square support vector machine for wastewater treatment process. Chemosphere 2022; 308: 136116p.
  173. Filipe J, Bessa RJ, Reis M, et al. Data-driven predictive energy optimization in a wastewater pumping station. Appl. Energy. 2019; 252: 113423p.
  174. Cheng H, Wu J, Liu Y, et al. A novel fault identification and root-causality analysis of incipient faults with applications to wastewater treatment processes. Chemometr Intell Lab Syst. 2019; 188: 24-36p.
  175. Lotfi K, Bonakdari H, Ebtehaj I,et al. Predicting wastewater treatment plant quality parameters using a novel hybrid linear-nonlinear methodology. J. Environ. Manage. 2019; 240: 463-474p.
  176. Vakili M, Mojiri A, Kindaichi T, et al. Cross-linked chitosan/zeolite as a fixed-bed column for organic micropollutants removal from aqueous solution, optimization with RSM and artificial neural network. J. Environ. Manage. 2019; 250: 109434p.
  177. Yaseen, Z. M.; Ramal, M. M.; Diop, L.; Jaafar, O.; Demir, V.; Kisi, O. Hybrid Adaptive Neuro-Fuzzy Models for Water Quality Index Estimation. Water Resour. Manage.2018; 32 (7): 2227–2245p.
  178. Singh, N. K.; Yadav, M.; Singh, V.; Padhiyar, H.; Kumar, V.; Bhatia, S. K.; Show, P.-L. Artificial Intelligence and Machine Learning-Based Monitoring and Design of Biological Wastewater Treatment Systems.  Technol.2023; 369: 128486p.
  179. Wang, G.; Jia, Q.-S.; Zhou, M.; Bi, J.; Qiao, J.; Abusorrah, A. Artificial Neural Networks for Water Quality Soft-Sensing in Wastewater Treatment: A Review.  Intell. Rev.2022; 55 (1): 565–587p.
  180. Aghdam, E.; Mohandes, S. R.; Manu, P.; Cheung, C.; Yunusa-Kaltungo, A.; Zayed, T. Predicting Quality Parameters of Wastewater Treatment Plants Using Artificial Intelligence Techniques.  Clean. Prod.2023, 405: 137019p.
  181. Bhagat SK, Tung TM, Yaseen ZM. Development of artificial intelligence for modeling wastewater heavy metal removal: State of the art, application assessment and possible future research. J. Clean. Prod. 2020; 250: 119473p.
  182. Niu C, Li X, Dai R, et al. Artificial intelligence-incorporated membrane fouling prediction for membrane-based processes in the past 20 years: A critical review. Water Res. 2022; 216: 118299p.
  183. Thakkar, A.; Chadimová, V.; Bjerrum, E. J.; Engkvist, O.; Reymond, J.-L. Retrosynthetic Accessibility Score (RAscore) – Rapid Machine Learned Synthesizability Classification from AI Driven Retrosynthetic Planning.  Sci.2021; 12 (9): 3339–3349p.
  184. Strieth-Kalthoff, F.; Szymkuć, S.; Molga, K.; Aspuru-Guzik, A.; Glorius, F.; Grzybowski, B. A. Artificial Intelligence for Retrosynthetic Planning Needs Both Data and Expert Knowledge.  Am. Chem. Soc.2024; 16: 11005–11017p.
  185. Srinivasan, S.; Batra, R.; Chan, H.; Kamath, G.; Cherukara, M. J.; Sankaranarayanan, S. K. R. S. Artificial Intelligence-Guided DE NovoMolecular Design Targeting COVID-19. ACS Omega 2021; 6 (19): 12557–12566p.
  186. Adir, O.; Poley, M.; Chen, G.; Froim, S.; Krinsky, N.; Shklover, J.; Shainsky-Roitman, J.; Lammers, T.; Schroeder, A. Integrating Artificial Intelligence and Nanotechnology for Precision Cancer Medicine.  Mater.2020; 32 (13): 1-15p.
  187. Hsu, W.-L.; Huang, C.-F.; Tan, C.-C.; Liu, N. Y.-C.; Chu, C. H.; Huang, P.-S.; Wu, P. C.; Yiin, S. J.; Tanaka, T.; Weng, C.-J.; et al. High-Resolution Metalens Imaging with Sequential Artificial Intelligence Models. Nano Lett.2023; 23 (24): 11614–11620p.
  188. Wang, S.; Sadowski, G.; Ji, Y. Strategy of Coupling Artificial Intelligence with Thermodynamic Mechanism for Predicting Complex Polymer Viscosities. ACS Sustain. Chem. Eng.2024; 12 (11): 4631–4643p.
  189. Xu, Y.; Jiang, W.-J.; Bai, Y.-Y.; Yang, Y.-J.; Zhang, Z.-L. Artificial Intelligence-Assisted Multiparameter Size Discrimination of Silver Nanoparticles through Electrochemical Collision.  Chem.2024; 96 (16): 6195–6201p.
  190. Gulbalkan, H. C.; Aksu, G. O.; Ercakir, G.; Keskin, S. Accelerated Discovery of Metal–Organic Frameworks for CO2Capture by Artificial Intelligence.  Eng. Chem. Res. 2024; 63 (1): 37–48p.
  191. Lai, N. S.; Tew, Y. S.; Zhong, X.; Yin, J.; Li, J.; Yan, B.; Wang, X. Artificial Intelligence (AI) Workflow for Catalyst Design and Optimization.  Eng. Chem. Res.2023; 62 (43): 17835–17848p.
  192. Hu, Y.; Ren, Q.; Liu, X.; Gao, L.; Xiao, L.; Yu, W. In SilicoPrediction of Human Organ Toxicity via Artificial Intelligence Methods.  Res. Toxicol. 2023; 36 (7): 1044–1054p.

Regular Issue Subscription Review Article
Volume 01
Issue 02
Received April 11, 2024
Accepted June 1, 2024
Published July 17, 2024