Environmental implications of Chitosan nanostructures.

Year : | Volume : 01 | Issue : | Page : –
By

    Rakshita Chaudhary

Abstract

Chitosan (CS), as a biopolymer, has unrivalled chemical and mechanical modification capabilities to develop novel characteristics, functions, and applications, particularly in the manufacture of cutting-edge membrane adsorbents. Membrane adsorbents utilizing carbon starch (CS) have emerged as a viable and efficient engineering instrument for eliminating diverse pollutants from aquatic settings, including heavy metals and dyes. To date, much study has been directed towards improving the adsorptive characteristics, permeability, physicochemical stability, and sustainability of CS-based membranes through the use of various types of nanoparticles (NPs). Additionally, nanoparticles (NPs) can be applied to personalise the appearance and performance of nano-structured and nano-fibrous membranes made from chitosan (CS). This chapter focuses on the utilisation of various types of nanoparticles in CS-based membrane adsorbents, comprising four major groups of metal-based, non-carbon mineral, carbonic (carbon-based), and Metal Organic Frameworks (MOFs). The review and discussion have been broadened to cover manufacturing methods and the effects of adding nanoparticles (NPs) on the chemistry, morphology, adsorption kinetics, and removal effectiveness of membranes made of chitosan (CS). This review might help researchers choose appropriate NP modifiers and preparation procedures for synthesising Nano composite CS membrane adsorbents for varied applications. Advances in chitosan modification, primarily with nanomaterials such as multi-walled carbon nanotubes and nanoparticles (TiO2, Ag, S, and ZnO), and their application for environmental remediation

Keywords: Chitosan, nanoparticles, nano-structured membranes, nano-fibrous membranes and Metal Organic Frameworks (MOFs)

How to cite this article: Rakshita Chaudhary Environmental implications of Chitosan nanostructures. ijab ; :-
How to cite this URL: Rakshita Chaudhary Environmental implications of Chitosan nanostructures. ijab {cited };:-. Available from: https://journals.stmjournals.com/ijab/article=/view=0

var fieldValue = “[user_role]”;
if (fieldValue == ‘indexingbodies’) {
document.write(‘Full Text PDF‘);
}
else if (fieldValue == ‘administrator’) { document.write(‘Full Text PDF‘); }
else if (fieldValue == ‘ijab’) { document.write(‘Full Text PDF‘); }
else { document.write(‘ ‘); }

References

Ehsan Salehi, Parisa Daraei , Ahmad Arabi Shamsabadi . A review on chitosan-based adsorptive membranes. Volume 152, 5 November 2016, Pages 419-432, https://doi.org/10.1016/j.carbpol.2016.07.033
Ehsan Salehi, Mohammad Khajavian, Nadia Sahebjamee, Maedeh Mahmoudi, Enrico Drioli, Takeshi Matsuura. Advances in nanocomposite and nanostructured chitosan membrane adsorbents for environmental remediation: A review. Volume 527, 1 April 2022, https://doi.org/10.1016/j.desal.2022.115565
chaudhary, N.Gaur, B.diwan. Nanoencapsulation for production of fermented foods and pigments. 2022, Pages 237-251. https://doi.org/10.1016/B978-0-323-91229-7.00013-1
Lyman, S.N.; Gustin, M.S.; Prestbo, E.M. A Passive Sampler for Ambient Gaseous Oxidized Mercury Concentrations. Atmos. Environ. 2010, 44, 246–252. https://doi.org/10.1016/J.ATMOSENV.2009.10.008
Ebinghaus, R.; Kock, H.H.; Coggins, A.M.; Spain, T.G.; Jennings, S.G.; Temme, C. Long-Term Measurements of Atmospheric Mercury at Mace Head, Irish West Coast, between 1995 and 2001. Atmos. Environ. 2002, 36, 5267–5276. https://doi.org/10.1016/S1352-2310(02)00691.
Fang, G.C.; Wu, Y.S.; Chang, T.H. Comparison of Atmospheric Mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. J. Hazard. Mater. 2009, 162, 607–615. https://doi.org/10.1016/J.JHAZMAT.2008.05.142.
USGS Science for Changing World. Available online: https://www.usgs.gov/mission-areas/water-resources.
Chemnasiri, W.; Hernandez, F.E. Gold Nanorod-Based Mercury Sensor Using Functionalized Glass Substrates. Sens. Actuators B Chem. 2012, 173, 322–328. https://doi.org/10.1016/J.SNB.2012.07.002.
Kim, M.-K.; Zoh, K.-D. Fate and Transport of Mercury in Environmental Media and Human Exposure. J. Prev. Med. Public Health 2012, 45, 335–343. https://doi.org/10.3961/jpmph.2012.45.6.335.
O’Connor, D.; Hou, D.; Ok, Y.S.; Mulder, J.; Duan, L.; Wu, Q.; Wang, S.; Tack, F.M.G.; Rinklebe, J. Mercury Speciation, Transformation, and Transportation in Soils, Atmospheric Flux, and Implications for Risk Management: A Critical Review. Environ. Int. 2019, 126, 747–761. https://doi.org/10.1016/J.ENVINT.2019.03.019.
Vélez-Torres, I.; Vanegas, D.C.; McLamore, E.S.; Hurtado, D. Mercury Pollution and Artisanal Gold Mining in Alto Cauca, Colombia: Woman’s Perception of Health and Environmental Impacts. J. Environ. Dev. 2018, 27, 415–444. https://doi.org/10.1177/1070496518794796.
Awad, F.S.; AbouZied, K.M.; Abou El-Maaty, W.M.; El-Wakil, A.M.; Samy El-Shall, M. Effective Removal of Mercury(II) from Aqueous Solutions by Chemically Modified Graphene Oxide Nanosheets. Arab. J. Chem. 2020, 13, 2659–2670. https://doi.org/10.1016/J.ARABJC.2018.06.018.
McLagan, D.S.; Mitchell, C.P.J.; Huang, H.; Abdul Hussain, B.; Duan Lei, Y.; Wania, F. The Effects of Meteorological Parameters and Diffusive Barrier Reuse on the Sampling Rate of a Passive Air Sampler for Gaseous Mercury. Atmos. Meas. Tech. 2017, 10, 3651–3660. https://doi.org/10.5194/amt-10-3651-2017.
Zhang, L.; Zeng, Y.; Cheng, Z. Removal of Heavy Metal Ions Using Chitosan and Modified Chitosan: A Review. J. Mol. Liq. 2016, 214, 175–191. https://doi.org/10.1016/J.MOLLIQ.2015.12.013.
Zhang, W.; Tong, Y.; Hu, D.; Ou, L.; Wang, X. Characterization of Atmospheric Mercury Concentrations along an Urban–Rural Gradient Using a Newly Developed Passive Sampler. Atmos. Environ. 2012, 47, 26–32. https://doi.org/10.1016/J.ATMOSENV.2011.11.046.
Amin, M.T.; Alazba, A.A.; Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater Using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 24. https://doi.org/10.1155/2014/825910.
Bora, T.; Dutta, J. Applications of Nanotechnology in Wastewater Treatment—A Review. J. Nanosci. Nanotechnol. 2014, 14, 613– 626. https://doi.org/10.1166/jnn.2014.8898.
Leudjo Taka, A.; Pillay, K.; Yangkou Mbianda, X. Nanosponge Cyclodextrin Polyurethanes and Their Modification with Nanomaterials for the Removal of Pollutants from Waste Water: A Review. Carbohydr. Polym. 2017, 159, 94–107. https://doi.org/10.1016/j.carbpol.2016.12.027.
Keshvardoostchokami, M.; Babaei, S.; Piri, F.; Zamani, A. Nitrate Removal from Aqueous Solutions by ZnO Nanoparticles and Chitosan-Polystyrene–Zn Nanocomposite: Kinetic, Isotherm, Batch and Fixed-Bed Studies. Int. J. Biol. Macromol. 2017, 101, 922– 930. https://doi.org/10.1016/J.IJBIOMAC.2017.03.162.
Leudjo Taka, A.; Doyle, B.P.; Carleschi, E.; Youmbi Fonkui, T.; Erasmus, R.; Fosso-Kankeu, E.; Pillay, K.; Mbianda, X.Y. Spectroscopic Characterization and Antimicrobial Activity of Nanoparticle Doped Cyclodextrin Polyurethane Bionanosponge. Mater. Sci. Eng. C 2020, 115, 111092. https://doi.org/10.1016/J.MSEC.2020.111092.
Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of Chitosan in Food, Pharmaceuticals, Medicine, Cosmetics, Agriculture, Textiles, Pulp and Paper, Biotechnology, and Environmental Chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. https://doi.org/10.1007/s10311-019-00904-x.
Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a Global Pollutant: Sources, Pathways, and Effects. Environ. Sci. Technol. 2013, 47, 4967–4983. https://doi.org/10.1021/es305071v.
Pirrone, N.; Aas, W.; Cinnirella, S.; Ebinghaus, R.; Hedgecock, I.M.; Pacyna, J.; Sprovieri, F.; Sunderland, E.M. Toward the next Generation of Air Quality Monitoring: Mercury. Atmos. Environ. 2013, 80, 599–611. https://doi.org/10.1016/J.ATMOSENV.2013.06.053.
Streets, D.G.; Horowitz, H.M.; Lu, Z.; Levin, L.; Thackray, C.P.; Sunderland, E.M. Global and Regional Trends in Mercury Emissions and Concentrations, 2010–2015. Atmos. Environ. 2019, 201, 417–427. https://doi.org/10.1016/J.ATMOSENV.2018.12.031.
Syeed Tofa, T.; Kunjali, K.L.; Paul, S.; Dutta, J. Visible Light Photocatalytic Degradation of Microplastic Residues with Zinc Oxide Nanorods. Environ. Chem. Lett. 2019, 17, 1341–1346. https://doi.org/10.1007/s10311-019-00859-z.
Benhebal, H.; Chaib, M.; Salmon, T.; Geens, J.; Leonard, A.; Lambert, S.D.; Crine, M.; Heinrichs, B. Photocatalytic Degradation of Phenol and Benzoic Acid Using Zinc Oxide Powders Prepared by the Sol–Gel Process. Alexandria Eng. J. 2013, 52, 517–523. https://doi.org/10.1016/J.AEJ.2013.04.005.
Ismail, A.M.; Menazea, A.A.; Kabary, H.A.; El-Sherbiny, A.E.; Samy, A. The Influence of Calcination Temperature on Structural and Antimicrobial Characteristics of Zinc Oxide Nanoparticles Synthesized by Sol–Gel Method. J. Mol. Struct. 2019, 1196, 332– 337. https://doi.org/10.1016/J.MOLSTRUC.2019.06.084.
Taghavi Fardood, S.; Ramazani, A.; Moradnia, F.; Afshari, Z.; Ganjkhanlu, S.; Yekke Zare, F. Green Synthesis of ZnO Nanoparticles via Sol-Gel Method and Investigation of Its Application in Solvent-Free Synthesis of 12-Aryl-Tetrahydrobenzo[α]Xanthene-11-One Derivatives Under Microwave Irradiation. Chem. Methodol. 2019, 3, 632–642. https://doi.org/10.33945/SAMI/CHEMM.2019.6.2.
Moradi Dehaghi, S.; Rahmanifar, B.; Moradi, A.M.; Azar, P.A. Removal of Permethrin Pesticide from Water by Chitosan–Zinc Oxide Nanoparticles Composite as an Adsorbent. J. Saudi Chem. Soc. 2014, 18, 348–355. https://doi.org/10.1016/j.jscs.2014.01.004.
Preethi, S.; Abarna, K.; Nithyasri, M.; Kishore, P.; Deepika, K.; Ranjithkumar, R.; Bhuvaneshwari, V.; Bharathi, D. Synthesis and Characterization of Chitosan/Zinc Oxide Nanocomposite for Antibacterial Activity onto Cotton Fabrics and Dye Degradation Applications. Int. J. Biol. Macromol. 2020, 164, 2779–2787. https://doi.org/10.1016/j.ijbiomac.2020.08.047.
Ran, Q.; Sheng, F.; Chang, G.; Zhong, M.; Xu, S. Sulfur-Doped Reduced Graphene Oxide@chitosan Composite for the Selective and Sensitive Electrochemical Detection of Hg2+ in Fish Muscle. Microchem. J. 2022, 175, 1–29. https://doi.org/10.1016/j.microc.2021.107138.
Amanulla, B.; Perumal, K.N.; Ramaraj, S.K. Chitosan Functionalized Gold Nanoparticles Assembled on Sulphur Doped Graphitic Carbon Nitride as a New Platform for Colorimetric Detection of Trace Hg2+. Sens. Actuators B Chem. 2019, 281, 281–287. https://doi.org/10.1016/J.SNB.2018.10.039.
Shawky, H.A.; El-Aassar, A.H.M.; Abo-Zeid, D.E. Chitosan/Carbon Nanotube Composite Beads: Preparation, Characterization, and Cost Evaluation for Mercury Removal from Wastewater of Some Industrial Cities in Egypt. J. Appl. Sci. 2011, 125, E93–E101. https://doi.org/10.1002/app.35628.
Sharma, P.; Mourya, M.; Choudhary, D.; Goswami, M.; Kundu, I.; Dobhal, M.P.; Tripathi, C.S.P.; Guin, D. Thiol Terminated Chitosan Capped Silver Nanoparticles for Sensitive and Selective Detection of Mercury (II) Ions in Water. Sens. Actuators B Chem. 2018, 268, 310–318. https://doi.org/10.1016/j.snb.2018.04.121.
Zhou, L.; Xiong, W.; Liu, S. Preparation of a Gold Electrode Modified with Au–TiO2 Nanoparticles as an Electrochemical Sensor for the Detection of Mercury (II) Ions. J. Mater. Sci. 2015, 50, 769–776. https://doi.org/10.1007/s10853-014-8636-y.
Mahmoud, M.E.; Nabil, G.M.; Abdel-Aal, H.; Fekry, N.A.; Osman, M.M. Imprinting “Nano-SiO2-Crosslinked Chitosan-NanoTiO2” Polymeric Nanocomposite for Selective and Instantaneous Microwave-Assisted Sorption of Hg (II) and Cu(II). ACS Sustain. Chem. Eng. 2018, 6, 4564–4573. https://doi.org/10.1021/acssuschemeng.7b03215.
Da̧browski, A. Adsorption—From Theory to Practice. Adv. Colloid Interface Sci. 2001, 93, 135–224. https://doi.org/10.1016/S0001- 8686(00)00082-8.
Patel, H.; Yadav, S. A Study on Application of Queuing Theory at Petrol Retail Outlet. Int. J. Knowl. Manag. Tour. Hosp. 2019, 2, 151–159. https://doi.org/10.1504/IJKMTH.2019.107817.
Liu, F.; Liu, Y.; Xu, Y.; Ni, L.; Meng, X.; Hu, Z.; Zhong, G.; Meng, M.; Wang, Y.; Han, J. Efficient Static and Dynamic Removal of Sr(II) from Aqueous Solution Using Chitosan Ion-Imprinted Polymer Functionalized with Dithiocarbamate. J. Environ. Chem. Eng. 2015, 3, 1061–1071. https://doi.org/10.1016/J.JECE.2015.03.014.
Xue, J.; Liao, C.; Wang, J.; Cryder, Z.; Xu, T.; Liu, F.; Gan, J. Development of Passive Samplers for in Situ Measurement of Pyrethroid Insecticides in Surface Water. Environ. Pollut. 2017, 224, 516–523. https://doi.org/10.1016/j.envpol.2017.02.034.
Escudero LB, Quintas PY, Wuilloud RG, Dotto GL (2019) Recent advances on elemental biosorption. Environ Chem Lett 17:409–427. https://doi.org/10.1007/s10311-018-0816-6 14
Mahl CRA, Taketa TB, Rocha-Neto JBM, Almeida WP, Beppu MM (2020) Copper ion uptake by chitosan in the presence of amyloid-β and histidine. Appl Biochem Biotechnol. 190(3):949–965. https://doi.org/10.1007/s12010-019-03120-z
Pokhrel S, Yadav PN, Adhikari R (2015) Applications of chitin and chitosan in industry and medical science: a review. Nepal J Sci Technol 16:99–104. https://doi.org/10.3126/njst.v16i1.14363
Varma AJ, Deshpande SV, Kennedy JF (2004) Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym 55(1):77–93. https://doi.org/10.1016/j.carbpol.2003.08.005
Zhang L, Zeng Y, Cheng Z (2016) Removal of heavy metal ions using chitosan and modifed chitosan: A review. J Mol Liq 214:175–191. https://doi.org/10.1016/j.molliq.2015.12.013
Wang B, Bai Z, Jiang H, Prinsen P, Luque R, Zhao S, Xuan J (2019) Selective heavy metal removal and water purifcation by microfuidically-generated chitosan microspheres: Characteristics, modeling and application. J Hazard Mater 364:192–205. https://doi.org/10.1016/j.jhazmat.2018.10.024
Zhang D, Xiao J, Guo Q, Yang J (2019) 3D-printed highly porous and reusable chitosan monoliths for Cu (II) removal. J Mater Sci 54:6728–6741. https://doi.org/10.1007/s10853-019-03332-y
Briao G, Andrade J, Silva M, Vieira M (2020) Removal of toxic metals from water using chitosan-based magnetic adsorbents: 259 Page 18 of 19 Journal of Polymer Research (2022) 29: 259 1 3 A review. Environ Chem Lett 18:1145–1168. https://doi.org/10. 1007/s10311-020-01003-y
Ganesan J, Ponnusamy S, Carolin C, Balji G (2019) Insights of CMNPs in water pollution control. IET Nanobiotechnol. 13(6):553–559. https://doi.org/10.1049/iet-nbt.2019.0030
Alaswad SO, Lakshmi KB, Sudha PN, Gomathi T, Arunachalam P (2020) Toxic heavy metal cadmium removal using chitosan and polypropylene based fber composite. Int J Biol Macromol 164:1809–1824. https://doi.org/10.1016/j.ijbiomac.2020.07.252
Emamy FH, Bumajdad A, Lukaszewicz JP (2021) Adsorption of hexavalent chromium and divalent lead ions on the nitrogen-enriched chitosan-based activated carbon. Nanomaterials 11(8):1907. https:// doi.org/10.3390/nano11081907
Vilela PB, Dalalibera A, Duminelli E, Becegato VA, Paulino A (2019) Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ Sci Pollut Res 26:28481–28489. https://doi.org/10.1007/ s11356-018-3208-3
Yuan D, Zhang W, Cui J, He L, Wang J, Yan C, Kou Y, Li J (2020) Facile fabrication of magnetic phosphorylated chitosan for the removal of Co(II) in water treatment: separation properties and adsorption mechanisms. Environ Sci Pollut Res 27:2588–2598. https://doi.org/10.1007/s11356-019-07026-5
Moganavally P, Deepa M, Sudha PN, Suresh R (2016) Adsorptive Removal of Lead and Cadmium Ions using Cross-Linked CMC Schif Base: Isotherm, Kinetics and Catalytic Activity. Orient J Chem 32(1):441–453. https://doi.org/10.13005/ojc/320150
Bhandari H, Garg S, Gaba R (2021) Advanced nanocomposites for removal of heavy metals from wastewater. Macromol Symp 397:2000337. https://doi.org/10.1002/masy.202000337
Sargin, I., Baran, T., & Arslan, G. (2020). Environmental remediation by chitosan-carbon nanotube supported palladium nanoparticles: Conversion of toxic nitroarenes into aromatic amines, degradation of dye pollutants and green synthesis of biaryls. Separation and Purification Technology, 247, 116987. https://doi.org/10.1016/j.seppur.2020.116987


Subscription Review Article
Volume
Issue
Received January 16, 2024
Accepted
Published

function myFunction2() {
var x = document.getElementById(“browsefigure”);
if (x.style.display === “block”) {
x.style.display = “none”;
}
else { x.style.display = “Block”; }
}
document.querySelector(“.prevBtn”).addEventListener(“click”, () => {
changeSlides(-1);
});
document.querySelector(“.nextBtn”).addEventListener(“click”, () => {
changeSlides(1);
});
var slideIndex = 1;
showSlides(slideIndex);
function changeSlides(n) {
showSlides((slideIndex += n));
}
function currentSlide(n) {
showSlides((slideIndex = n));
}
function showSlides(n) {
var i;
var slides = document.getElementsByClassName(“Slide”);
var dots = document.getElementsByClassName(“Navdot”);
if (n > slides.length) { slideIndex = 1; }
if (n (item.style.display = “none”));
Array.from(dots).forEach(
item => (item.className = item.className.replace(” selected”, “”))
);
slides[slideIndex – 1].style.display = “block”;
dots[slideIndex – 1].className += ” selected”;
}