Dual Fuel Cell Power System for Electric Vehicles

Year : 2024 | Volume :11 | Issue : 01 | Page : 10-19
By

C. Armenta -Déu

  1. Professor Facultad de Ciencias Físicas. Universidad Complutense de Madrid Madrid Spain

Abstract

The paper introduces a new power system for electric vehicles (EVs), consisting of a dual fuel cell pack, enhancing the EV performance and improving the energy rate. The power system topology consists of a Proton Exchange Membrane Fuel Cell (PEMFC), which powers the vehicle, and an auxiliary Direct Methanol Fuel Cell (DMFC), which supplies energy to an electrolyzer for hydrogen production and services the electric vehicle ancillary equipment. The hybrid power system optimizes the energy use, increasing the driving range rate from an average value of 7.68 km per liter of fuel tank in available commercial fuel cell electric vehicles (FCEVs) to 12.09 km/L in our prototype; this value applies for any tank size. Increasing the energy use performance leads to extending the driving range from 650–756 km for the available commercial models to 960–1215 km for the same commercial models equipped with the proposed power system. The driving range extends 400 km, meaning a 58% increase on average.

Keywords: Electric Vehicle; Fuel Cell; Energy Improvement; Driving Range Extension; Performance Optimization

[This article belongs to Trends in Machine design(tmd)]

How to cite this article: C. Armenta -Déu. Dual Fuel Cell Power System for Electric Vehicles. Trends in Machine design. 2024; 11(01):10-19.
How to cite this URL: C. Armenta -Déu. Dual Fuel Cell Power System for Electric Vehicles. Trends in Machine design. 2024; 11(01):10-19. Available from: https://journals.stmjournals.com/tmd/article=2024/view=147169




Browse Figures

References

  1. Guo, Z., Jia, X., & Yang, Y. (2021, October). Traditional engines versus all kinds of alternatives: performance and emissions. In 2021 3rd International Conference on Artificial Intelligence and Advanced Manufacture (AIAM) (pp. 76-82). IEEE.
  2. Adanur, S., & Zheng, H. (2013). Synthesis and characterization of sulfonated polyimide based membranes for proton exchange membrane fuel cells. Journal of fuel cell science and technology, 10(4), 041001.
  3. DOE, U. (2011). Progress and Accomplishments in Hydrogen and Fuel Cells. Fact sheet Available from:/http://www1. eere. energy. gov/hydrogenandfuelcells/pdfs/accomplishments. pdfS.(accessed 15.04. 12).
  4. Arutyunov, V. S. (2022). Hydrogen energy: Significance, sources, problems, and prospects (A review). Petroleum Chemistry, 62(6), 583-593.
  5. Schüth, F. (2009). Challenges in hydrogen storage. The European Physical Journal Special Topics, 176, 155-166.
  6. McCay, M. H., & Shafiee, S. (2020). Hydrogen: An energy carrier. In Future energy (pp. 475-493). Elsevier.
  7. Yamashita, A., Kondo, M., Goto, S., & Ogami, N. (2015). Development of high-pressure hydrogen storage system for the Toyota “Mirai” (No. 2015-01-1169). SAE Technical Paper.
  8. Mori, D., & Hirose, K. (2009). Recent challenges of hydrogen storage technologies for fuel cell vehicles. International journal of hydrogen energy, 34(10), 4569-4574.
  9. Hua, T. Q., Ahluwalia, R. K., Peng, J. K., Kromer, M., Lasher, S., McKenney, K., … & Sinha, J. (2011). Technical assessment of compressed hydrogen storage tank systems for automotive applications. International Journal of Hydrogen Energy, 36(4), 3037-3049.
  10. Dogan, B. (2006, January). Hydrogen storage tank systems and materials selection for transport applications. In ASME pressure vessels and piping conference (Vol. 47578, pp. 571-578).
  11. Baldwin, Donald. FINAL REPORT-Development of High Pressure Hydrogen Storage Tank for Storage and Gaseous Truck Delivery. United States: N. p., 2017. Web doi:10.2172/1373926.
  12. Léon, A. (Ed.). (2008). Hydrogen technology: mobile and portable applications. Springer Science & Business Media.
  13. Alves, M. P., Gul, W., Cimini Junior, C. A., & Ha, S. K. (2022). A review on industrial perspectives and challenges on material, manufacturing, design and development of compressed hydrogen storage tanks for the transportation sector. Energies, 15(14), 5152.
  14. Barthélémy, H., Weber, M., & Barbier, F. (2017). Hydrogen storage: Recent improvements and industrial perspectives. International Journal of Hydrogen Energy, 42(11), 7254-7262.
  15. Li, H., Welsh, R., & Morris, A. (2019). The influence of driver’s psychological states on the safety perception of hydrogen electric vehicles. International Journal of Transport Development and Integration, 3(3), 207-221.
  16. Li, H. (2023). How safe is your hydrogen-powered car?-some safety and human factors issues (Doctoral dissertation, Loughborough University).
  17. Roche, M. Y., Mourato, S., Fischedick, M., Pietzner, K., & Viebahn, P. (2010). Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications. Energy policy, 38(10), 5301-5310.
  18. Lipman, T. E., Elke, M., & Lidicker, J. (2018). Hydrogen fuel cell electric vehicle performance and user-response assessment: Results of an extended driver study. International Journal of Hydrogen Energy, 43(27), 12442-12454.
  19. Martin, E., Shaheen, S. A., Lipman, T. E., & Lidicker, J. R. (2009). Behavioral response to hydrogen fuel cell vehicles and refueling: Results of California drive clinics. International Journal of Hydrogen Energy, 34(20), 8670-8680.
  20. Tarigan, A. K., & Bayer, S. B. (2012). Temporal change analysis of public attitude, knowledge and acceptance of hydrogen vehicles in Greater Stavanger, 2006–2009. Renewable and Sustainable Energy Reviews, 16(8), 5535-5544.
  21. Roche, M. Y., Mourato, S., Fischedick, M., Pietzner, K., & Viebahn, P. (2010). Public attitudes towards and demand for hydrogen and fuel cell vehicles: A review of the evidence and methodological implications. Energy policy, 38(10), 5301-5310.
  22. Flynn, R., Bellaby, P., & Ricci, M. (2009). The ‘value-action gap’in public attitudes towards sustainable energy: the case of hydrogen energy. The Sociological Review, 57(2_suppl), 159-180.
  23. Kundu, A., Gil, J. H., Jang, J. H., Lee, H. R., Jung, C. R., Ku, B. S., & Chae, K. S. (2010). Room temperature hydrogen production from water in auto-electrolytic process. International journal of hydrogen energy, 35(20), 10827-10832.
  24. Wang, H., Leung, D. Y., & Xuan, J. (2012). Modeling of a micro auto-electrolytic cell for hydrogen production. International journal of hydrogen energy, 37(13), 10002-10009.
  25. De, B. S., Cunningham, J., Khare, N., Luo, J. L., Elias, A., & Basu, S. (2022). Hydrogen generation and utilization in a two-phase flow membraneless microfluidic electrolyzer-fuel cell tandem operation for micropower application. Applied Energy, 305, 117945.
  26. Ezzat, M. F., & Dincer, I. (2016). Development, analysis and assessment of a fuel cell and solar photovoltaic system powered vehicle. Energy conversion and management, 129, 284-292.
  27. Ezzat, M. F., & Dincer, I. (2018). Development, analysis and assessment of fuel cell and photovoltaic powered vehicles. International Journal of Hydrogen Energy, 43(2), 968-978.
  28. Chen, P. C. (2012). Configuration of solar-hydrogen mild hybrid fuel cell power systems for electric vehicles. Journal of Power Sources, 201, 243-252.
  29. Huang, Z., Zhang, C., Zeng, T., Lv, C., & Chan, S. H. (2019). Modeling and energy management of a photovoltaic‐fuel cell‐battery hybrid electric vehicle. Energy Storage, 1(3), e61.
  30. Martin, H., Buffat, R., Bucher, D., Hamper, J., & Raubal, M. (2022). Using rooftop photovoltaic generation to cover individual electric vehicle demand—A detailed case study. Renewable and sustainable energy reviews, 157, 111969.
  31. Simon Araya, Samuel; Liso, Vincenzo; Cui, Xiaoti; Li, Na; Zhu, Jimin; Sahlin, Simon Lennart; Jensen, Søren Højgaard; Nielsen, Mads Pagh; Kær, Søren Knudsen (2020). “A Review of The Methanol Economy: The Fuel Cell Route”. Energies. 13 (3): 596. doi:3390/en13030596.
  32. Edwards, P.P.; Kuznetsov, V.L.; David, W.I.F.; Brandon, N.P. (December 2008). “Hydrogen and fuel cells: Towards a sustainable energy future”. Energy Policy. 36 (12): 4356–4362. doi:1016/j.enpol.2008.09.036.
  33. Dohle, H.; Mergel, J. & Stolten, D.: Heat and power management of a direct-methanol-fuel-cell (DMFC) system, Journal of Power Sources, 2002, 111, 268-282.
  34. Nagamoto, Fuel Cells: Electrochemical Reactions, Editor(s): K.H. Jürgen Buschow, Robert W. Cahn, Merton C. Flemings, Bernhard Ilschner, Edward J. Kramer, Subhash Mahajan, Patrick Veyssière, Encyclopedia of Materials: Science and Technology, Elsevier, 2001, Pages 3359-3367, ISBN 9780080431529,
  35. C HARTNIG, L JÖRISSEN, W LEHNERT, J SCHOLTA, 5-Direct methanol fuel cells, Editor(s): Michael Gasik, In Woodhead Publishing Series in Electronic and Optical Materials, Materials for Fuel Cells, Woodhead Publishing, 2008, Pages 185-208, ISBN 9781845693305,
  36. Paul Breeze,Chapter 8-Direct Methanol Fuel Cell, Editor(s): Paul Breeze, Fuel Cells, Academic Press, 2017, Pages 75-82, ISBN 9780081010396,
  37. Wilhelm, H. Janßen, J. Mergel, D. Stolten, Energy storage characterization for a direct methanol fuel cell hybrid system, Journal of Power Sources, Volume 196, Issue 12, 2011, Pages 5299-5308, ISSN 0378-7753,
  38. Methanol and Hydrogen. Methanol – the ideal material for storing hydrogen for fuel cell stacks. Danish Technological Institute. [Accessed online: 19/04/2024]
  39. Elsaid, K., Abdelfatah, S., Elabsir, A. M. A., Hassiba, R. J., Ghouri, Z. K., & Vechot, L. (2021). Direct alcohol fuel cells: Assessment of the fuel’s safety and health aspects. International Journal of Hydrogen Energy, 46(59), 30658-30668.
  40. Carpenter, A. R., & Hinze, P. C. (2004). System safety analysis of hydrogen and methanol vehicle fuels. Process safety progress, 23(4), 292-299.
  41. DeLuchi, M. A., Johnston, R. A., & Sperling, D. (1988). Methanol vs. natural gas vehicles: a comparison of resource supply, performance, emissions, fuel storage, safety, costs, and transitions. SAE Transactions, 921-962.
  42. Li, Y. Z. (2019). Study of fire and explosion hazards of alternative fuel vehicles in tunnels. Fire safety journal, 110, 102871.
  43. Deng, Z., Bai, M., Qi, M., Tian, Y., Qu, H., & Liu, Y. (2024). Inherent safety assessment of on-board methanol reforming hydrogen production fuel cell system considering jet fire and vapor cloud explosion. International Journal of Hydrogen Energy, 50, 1047-1061.
  44. Ramezanifar, E., Gholamizadeh, K., Mohammadfam, I., & Mirzaei Aliabadi, M. (2023). Risk assessment of methanol storage tank fire accident using hybrid FTA-SPA. PLoS one, 18(3), e0282657.
  45. Bultel, M. Aurousseau, P. Ozil, L. Perrin, Risk Analysis on a Fuel Cell in Electric Vehicle Using the MADS/MOSAR Methodology, Process Safety and Environmental Protection, Volume 85, Issue 3, 2007, Pages 241-250, ISSN 0957-5820,
  46. Srinivasan, S. (2006). Fuel cells: from fundamentals to applications. Springer Science & Business media.
  47. Zoulias, E., Varkaraki, E., Lymberopoulos, N., Christodoulou, C. N., & Karagiorgis, G. N. (2004). A review on water electrolysis. Tcjst, 4(2), 41-71.
  48. Chi, J., & Yu, H. (2018). Water electrolysis based on renewable energy for hydrogen production. Chinese Journal of Catalysis, 39(3), 390-394.
  49. Zaik, K., & Werle, S. (2023). Solar and wind energy in Poland as power sources for electrolysis process-A review of studies and experimental methodology. International Journal of Hydrogen Energy, 48(31), 11628-11639.
  50. Naimi, Y., & Antar, A. (2018). Hydrogen generation by water electrolysis. Advances in hydrogen generation technologies, 1.
  51. Kelly, N. A., Gibson, T. L., & Ouwerkerk, D. B. (2011). Generation of high-pressure hydrogen for fuel cell electric vehicles using photovoltaic-powered water electrolysis. International Journal of Hydrogen Energy, 36(24), 15803-15825.
  52. Ben Said-Romdhane, M., & Skander-Mustapha, S. (2021). A review on vehicle-integrated photovoltaic panels. Advanced Technologies for Solar Photovoltaics Energy Systems, 349-370.
  53. Sagaria, S., Duarte, G., Neves, D., & Baptista, P. (2022). Photovoltaic integrated electric vehicles: Assessment of synergies between solar energy, vehicle types and usage patterns. Journal of Cleaner Production, 348, 131402.
  54. Diahovchenko, I., Petrichenko, L., Borzenkov, I., & Kolcun, M. (2022). Application of photovoltaic panels in electric vehicles to enhance the range. Heliyon, 8(12).
  55. Armenta-Déu, C. (2023) Fuel Cell PV Hybrid System for EVs. Journal of Automobile Engineering and Applications, Volume 10, Issue 3, pages 20-30
  56. Armenta-Déu, C. (2024) Control Device for Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles. Preprints.org.
  57. Roldán, J.A. (2023) The power of hydrogen: Exploring the energy potential of 1 kg of hydrogen. Posted on 25 June 2023. [Accessed online: 20/04/2024]
  58. Bockris, J. O. M. (2011). Hydrogen. Materials, 4(12), 2073-2091.
  59. Bernholz, Jan (13 September 2018). “RWE’s former, current and possible future energy storage applications” (PDF). RWE. p. 10. Archived from the original on 23 May 2019. Retrieved 23 May 2019. Total Efficiency: 70%, or 86% (usage of waste heat)
  60. ITM – Hydrogen Refuelling Infrastructure – February 2017″ (PDF). level-network.com. p. 12. Archived (PDF) from the original on 17 April 2018. Retrieved 17 April 2018.
  61. Koponen, Joonas & Kosonen, Antti & Huoman, Kimmo & Ahola, Jero & Ahonen, Tero & Ruuskanen, Vesa. (2016). Specific Energy Consumption of PEM Water Electrolysers in Atmospheric and Pressurised Conditions. 10.1109/EPE.2016.7695576.
  62. Petronilla Fragiacomo, Matteo Genovese, Numerical simulations of the energy performance of a PEM water electrolysis based high-pressure hydrogen refueling station, International Journal of Hydrogen Energy, Volume 45, Issue 51, 2020, Pages 27457-27470, ISSN 0360-3199,
  63. Bertuccioli, L. et al. (2014) Development of Water Electrolysis in the European Union. Final Report. Fuel cells and hydrogen. Joint undertaking. [Accessed online: 22/04/2024]
  64. Stensvold, Tore (26 January 2016). «Coca-Cola-oppskrift» kan gjøre hydrogen til nytt norsk industrieventyr Archived 5 March 2016 at the Wayback Machine. Teknisk Ukeblad,
  65. Houcheng Zhang, Guoxing Lin, Jincan Chen, Evaluation and calculation on the efficiency of a water electrolysis system for hydrogen production, International Journal of Hydrogen Energy, Volume 35, Issue 20, 2010, Pages 10851-10858, ISSN 0360-3199,
  66. W. Harrison, R. Remick, and G.D. Martin. National Renewable Energy Laboratory; A. Hoskin. Natural Resources Canada. Hydrogen Production: Fundamentals and Cas Study Summaries. Conference Paper NREL/CP-550-47302 January 2010. [Accessed online: 22/04/2024]
  67. Armenta-Déu, C., Cortés, H. (2023) Analysis of Kinetic Energy Recovery Systems in Electric Vehicles, Vehicles, 5(2), 387-403
  68. Table 1. Selected fuel properties of methanol. Technology Collaboration Programme on Advanced Motor Fuels. IEA-AMF. [Accessed online: 22/04/2024]
  69. Fakhreddine, O., Gharbia, Y., Derakhshandeh, J. F., & Amer, A. M. (2023). Challenges and Solutions of Hydrogen Fuel Cells in Transportation Systems: A Review and Prospects. World Electric Vehicle Journal, 14(6), 156.
  70. Samsun, R. C., Rex, M., Antoni, L., & Stolten, D. (2022). Deployment of fuel cell vehicles and hydrogen refueling station infrastructure: a global overview and perspectives. Energies, 15(14), 4975.
  71. Lovins, A. B. (2020). Reframing automotive fuel efficiency. SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy, 1(13-01-01-0004), 59-84.

Regular Issue Subscription Original Research
Volume 11
Issue 01
Received April 23, 2024
Accepted May 2, 2024
Published May 21, 2024