Antioxidant activity of Passiflora foetida leaf extracts and silver nanoparticles in diabetic induced rats

Year : 2024 | Volume :14 | Issue : 01 | Page : 10-16
By

    Ravi Babu.Birudu

  1. Jagadish Naik

  2. Awais Ali

  3. Waseef Ullah

  4. Syed Luqman Ali

  5. Majda Badaoui

  6. Hajar Arizada

  1. Research Scholar, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
  2. Research Scholar, Acharya Nagarjuna University, Guntur, Andhra Pradesh, India
  3. Research Scholar, Abdul wali Khan University, Mardan, Pakistan
  4. Research Scholar, Abdul wali Khan University, Mardan, Pakistan
  5. Research Scholar, Abdul wali Khan University, Mardan, Pakistan
  6. Research Scholar, Cadi Ayyad University, Marrakech, Morocco
  7. Research Scholar, Cadi Ayyad University, Marrakech, Morocco

Abstract

The anti-oxidant system present in our body prevents against the free radicals. Anti-oxidants were glutathione peroxidise,serum catalase,vitamin E, ascorbic acid and superoxide. In our study the plant extract of Passiflora foetidae were used to estimate the antioxidant levels in diet-induced diabetic rats. The mean of glutathione peroxide of normal rats was 92.98±1.65. “The mean of diet-induced diabetic rats was 152.50 ± 1.92*. Diabetic rats treated with sitagliptin and vildagliptin had mean values of 121.75 ± 4.33* and 124.90 ± 2.85*, respectively. The mean values of Ascorbic acid in normal rats was 0.50±0.27.Diet- induced diabetic rats have ascorbic acid mean 3.50±0.28. The normal rat’s mean of serum catalase was 112.55±1.76.Diet induced rats have mean a value of 125.78±1.96*.This value is significant. Diet-induced diabetic rats treated with a standard drug have a mean of 121.38 ± 1.68*. Diabetic rats treated with plant extracts of PSF (Passiflora foetida leaf) exhibit mean values of 123.47 ± 1.67*, 119.27 ± 4.38*, and 113.07 ± 3.82. The outcomes of our study indicate that both plant extracts and standard drugs improve the anti-oxidant levels.

Keywords: Anti-oxidants, Ascorbic acid, Glutathione peroxidase, Serum catalase, Plant extracts.

[This article belongs to Research & Reviews: A Journal of Pharmacology(rrjop)]

How to cite this article: Ravi Babu.Birudu, Jagadish Naik, Awais Ali, Waseef Ullah, Syed Luqman Ali, Majda Badaoui, Hajar Arizada.Antioxidant activity of Passiflora foetida leaf extracts and silver nanoparticles in diabetic induced rats.Research & Reviews: A Journal of Pharmacology.2024; 14(01):10-16.
How to cite this URL: Ravi Babu.Birudu, Jagadish Naik, Awais Ali, Waseef Ullah, Syed Luqman Ali, Majda Badaoui, Hajar Arizada , Antioxidant activity of Passiflora foetida leaf extracts and silver nanoparticles in diabetic induced rats rrjop 2024 {cited 2024 Mar 30};14:10-16. Available from: https://journals.stmjournals.com/rrjop/article=2024/view=137967


References

1. Organization WH (1992) Research guidelines for evaluating the safety and efficacy of herbal medicines https://www.who.int/publications/i/item/9290611103
2. Edem DO, Usoh IF. Biochemical Changes in Wistar Rats on Oral Doses of Mistletoe (Loranthus micranthus). American Journal of Pharmacology and Toxicology. 2009;4(3):94-97. doi:https://doi.org/10.3844/ajptsp.2009.94.97
3. Ali SL, Ali A, Alamri A, Baiduissenova A, Dusmagambetov M, Abduldayeva A. Genomic annotation for vaccine target identification and immunoinformatics-guided multi-epitope-based vaccine design against Songling virus through screening its whole genome encoded proteins. Front Immunol. 2023 Nov 28;14:1284366. doi: 10.3389/fimmu.2023.1284366.
4. Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F (2022) The role of plant-derived natural antioxidants in reduction of oxidative stress. BioFactors 48:611–633. https://doi.org/10.1002/biof.1831
5. Santo A, Zhu H, Y. Robert Li. Free Radicals: From Health to Disease. Reactive Oxygen Species. 2016;2(4):245-263245-263. Accessed March 19, 2024. https://rosj.org/index.php/ros/article/view/33
6. Rimbach G, Application of Nutrigenomics Tools to Analyze the Role of Oxidants and Antioxidants in Gene Expression. Taylor & Francis. Published May 23, 2005. Accessed March 19, 2024. https://www.taylorfrancis.com/chapters/mono/10.1201/9781420028096-6/application-nutrigenomics-tools-analyze-role-oxidants-antioxidants-gene-expression-gerald-rimbach-j%C3%B6rgen-fuchs
7. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem. 1999 Oct;47(10):3954-62. doi: 10.1021/jf990146l.
8. Proestos C, Boziaris IS, Nychas G-J, Komaitis M (2006) Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem 95:664–671
9. Proestos C, Varzakas T. Aromatic Plants: Antioxidant Capacity and Polyphenol Characterisation. Foods. 2017 Apr 4;6(4):28. doi: 10.3390/foods6040028.
10. Lai L-S, Chou S-T, Chao W-W (2001) Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J Agric Food Chem 49:963–968
11. Van Dam PS, Van Asbeck BS, Van Oirschot J, et al (2001) Glutathione and α‐lipoate in diabetic rats: nerve function, blood flow and oxidative state. Eur J Clin Invest 31:417–424
12. ALi A, Manzoor U, Ali SL, et al (2023) CURRENTLY TRENDING AND FUTURISTIC BIOLOGICAL MODALITIES IN THE MANAGEMENT OF DIFFERENT TYPES OF DIABETES: A COMPREHENSIVE REVIEW. J Popul Ther Clin Pharmacol 30:2948–2970
13. Kowluru RA. Effect of reinstitution of good glycemic control on retinal oxidative stress and nitrative stress in diabetic rats. Diabetes. 2003 Mar;52(3):818-23. doi: 10.2337/diabetes.52.3.818.
14. Obrosova IG, Drel VR, Pacher P, Ilnytska O, Wang ZQ, Stevens MJ, Yorek MA. Oxidative-nitrosative stress and poly(ADP-ribose) polymerase (PARP) activation in experimental diabetic neuropathy: the relation is revisited. Diabetes. 2005 Dec;54(12):3435-41. doi: 10.2337/diabetes.54.12.3435.
15. Kashiba M, Oka J, Ichikawa R, Kasahara E, Inayama T, Kageyama A, Kageyama H, Osaka T, Umegaki K, Matsumoto A, Ishikawa T, Nishikimi M, Inoue M, Inoue S. Impaired ascorbic acid metabolism in streptozotocin-induced diabetic rats. Free Radic Biol Med. 2002 Nov 1;33(9):1221-30. doi: 10.1016/s0891-5849(02)01010-9.
16. Sundaram RK, Bhaskar A, Vijayalingam S, Viswanathan M, Mohan R, Shanmugasundaram KR. Antioxidant status and lipid peroxidation in type II diabetes mellitus with and without complications. Clin Sci (Lond). 1996 Apr;90(4):255-60. doi: 10.1042/cs0900255.
17. Savu O, Bradescu OM, Serafinceanu C, Iosif L, Tirgoviste CI, Stoian I. Erythrocyte caspase-3 and antioxidant defense is activated in red blood cells and plasma of type 2 diabetes patients at first clinical onset. Redox Rep. 2013;18(2):56-62. doi: 10.1179/1351000213Y.0000000040.
18. El Haouari M. Platelet Oxidative Stress and its Relationship with Cardiovascular Diseases in Type 2 Diabetes Mellitus Patients. Curr Med Chem. 2019;26(22):4145-4165. doi: 10.2174/0929867324666171005114456.
19. Petya Goycheva, Kamelia Petkova-Parlapanska, Ekaterina Georgieva, Yanka Karamalakova, Nikolova G. Biomarkers of Oxidative Stress in Diabetes Mellitus with Diabetic Nephropathy Complications. International Journal of Molecular Sciences. 2023;24(17):13541-13541. doi:https://doi.org/10.3390/ijms241713541
20. Beydoun MA, Canas JA, Beydoun HA, et al (2012) Serum antioxidant concentrations and metabolic syndrome are associated among US adolescents in recent national surveys. J Nutr 142(9):1693–1704
21. Khazim K, Giustarini D, Rossi R, et al (2013) Glutathione redox potential is low and glutathionylated and cysteinylated hemoglobin levels are elevated in maintenance hemodialysis patients. Transl Res 162(1):16–25 doi: 10.1016/j.trsl.2012.12.014.
22. Ford ES. Prevalence of the metabolic syndrome in US populations. Endocrinol Metab Clin North Am. 2004 Jun;33(2):333-50. doi: 10.1016/j.ecl.2004.03.004
23. Battin EE, Brumaghim JL (2009) Antioxidant activity of sulfur and selenium: a review of reactive oxygen species scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Cell Biochem Biophys 55(1):1–23 doi: 10.1007/s12013-009-9054-7.
24. Eyer P, Podhradský D (1986) Evaluation of the micromethod for determination of glutathione using enzymatic cycling and Ellman’s reagent. Anal Biochem 153(1):57–66. doi: 10.1016/0003-2697(86)90061-8.
25. Hadwan MH. Simple spectrophotometric assay for measuring catalase activity in biological tissues. BMC Biochem. 2018 Aug 3;19(1):7. doi: 10.1186/s12858-018-0097-5.
26. TERUUCHI J. On the determination of dehydroascorbic acid through 2,4-dinitrophenylhydrazine. Kitasato Arch Exp Med. 1950 Oct;23(2):114.
27. Toluwalope O, Awais A. Effect of Ethanolic Ocimum Tenuiflorum (Holy Basil) Extract on Diclofenac Induced Hepatotoxicity in Rats. Direct Research Journal of Health and Pharmacology. 2023;10(2):10. doi:https://doi.org/10.26765/DRJHP88839693 .
28. Sathish R, Sahu A, Natarajan K. Antiulcer and antioxidant activity of ethanolic extract of Passiflora foetida L. Indian J Pharmacol. 2011 May;43(3):336-9. doi: 10.4103/0253-7613.81501
29. Shen N, Wang T, Gan Q, Liu S, Wang L, Jin B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022 Jul 30;383:132531. doi: 10.1016/j.foodchem.2022.132531.
30. Williamson J, Davison G. Targeted Antioxidants in Exercise-Induced Mitochondrial Oxidative Stress: Emphasis on DNA Damage. Antioxidants (Basel). 2020 Nov 17;9(11):1142. doi: 10.3390/antiox9111142.
31. Dinh P, Tran C, Dinh T, Ali A, Pan S. Hsa_circRNA_0000284 acts as a ceRNA to participate in coronary heart disease progression by sponging miRNA-338-3p via regulating the expression of ETS1. J Biomol Struct Dyn. 2023 Jun 19:1-14. doi: 10.1080/07391102.2023.2225109
32. Manzoor U, Ali A, Ali SL, Abdelkarem O, Kanwal S, Alotaibi SS, Baazeem A, Baiduissenova A, Yktiyarov A, Hajar A, Olzhabay A. Mutational screening of GDAP1 in dysphonia associated with Charcot-Marie-Tooth disease: clinical insights and phenotypic effects. J Genet Eng Biotechnol. 2023 Nov 15;21(1):119. doi: 10.1186/s43141-023-00568-9.
33. Luqman Ali, Ali A, Abdulaziz Alamri, Aliya Baiduissenova, Marat Dusmagambetov, Aigul Abduldayeva. Genomic annotation for vaccine target identification and immunoinformatics-guided multi-epitope-based vaccine design against Songling virus through screening its whole genome encoded proteins. Frontiers in Immunology. 2023;14. doi:https://doi.org/10.3389/fimmu.2023.1284366
34. Hussain R, Rahim F, Ullah H, Khan S, Sarfraz M, Iqbal R, Suleman F, Al-Sadoon MK. Design, Synthesis, In Vitro Biological Evaluation and In Silico Molecular Docking Study of Benzimidazole-Based Oxazole Analogues: A Promising Acetylcholinesterase and Butyrylcholinesterase Inhibitors. Molecules. 2023 Oct 10;28(20):7015. doi: 10.3390/molecules28207015.
35. Nwanna E, Ojo R, Shafiq N, Ali A, Okello E, Ganiyu Oboh. An In Silico In Vitro and In Vivo Study on the Influence of an Eggplant Fruit (Solanum anguivi Lam) Diet on Metabolic Dysfunction in the Sucrose-Induced Diabetic-like Fruit Fly (Drosophila melanogaster). Foods. 2024;13(4):559-559. doi:https://doi.org/10.3390/foods13040559
36. Xu H, Du X, Xu J, Zhang Y, Tian Y, Liu G, Wang X, Ma M, Du W, Liu Y, Dai L, Huang W, Tong N, Wei Y, Fu X. Pancreatic β cell microRNA-26a alleviates type 2 diabetes by improving peripheral insulin sensitivity and preserving β cell function. PLoS Biol. 2020 Feb 24;18(2):e3000603. doi: 10.1371/journal.pbio.3000603.


Regular Issue Subscription Original Research
Volume 14
Issue 01
Received February 28, 2024
Accepted March 15, 2024
Published March 30, 2024