Aureobasidium pullulans- The Versatile Microcolonial Fungus for Industrial Production of Natural Products

Year : 2024 | Volume : | : | Page : –
By

Swapnil Chaturvedi

Indira P Sarethy

  1. Research Scholar Department of Biotechnology, Jaypee Institute of Informational Technology, Noida Uttar Pradesh India
  2. Professor Department of Biotechnology, Jaypee Institute of Informational Technology, Noida Uttar Pradesh India

Abstract

Aureobasidium pullulans, a yeast-like fungus, exhibits a remarkable capacity for synthesizing an extensive array of bioproducts with diverse industrial applications. This fungus is known to survive in several environmental conditions, making it a robust organism for biotechnological processes. The organism is characterized by its adaptability to various environmental conditions and habitats. It produces an array of extracellular enzymes such as amylases, lipases, proteases, and pectinases, contributing to its role as a versatile biocatalyst. Additionally, A. pullulans synthesizes bioactive compounds including pullulan, polyols, melanin, and extracellular polysaccharides, which exhibit pharmaceutical, food, and industrial applications. Pullulan, in particular, stands out as a valuable product with unique properties such as water solubility, film-forming ability, and biodegradability. Recent advancements in genetic engineering and fermentation technology have enhanced production efficiency of important products in A. pullulans and expanded applications in various domains. A. pullulans has environmental applications, particularly in bioremediation processes. It can degrade a variety of organic pollutants, including hydrocarbons, pesticides, and dyes, through its enzymatic activities. Additionally, A. pullulans has been studied for its role in the bioremediation of heavy metal-contaminated environments by immobilizing metals and facilitating their removal from contaminated sites. Overall, A. pullulans and its wide range of bioproducts are promising resources for sustainable bioprocessing and the development of eco-friendly solutions across diverse industries. This review provides an overview of A. pullulans and its wide range of bioproducts, emphasizing its significance in biotechnology, food, pharmaceuticals, agriculture, and environmental remediation, with recent updates on technologies speeding up the production processes at industrial scale.

Keywords: Yeast-like fungus, production scale-up, agriculture, pharmaceutical, extracellular polysaccharides

How to cite this article: Swapnil Chaturvedi, Indira P Sarethy. Aureobasidium pullulans- The Versatile Microcolonial Fungus for Industrial Production of Natural Products. Research & Reviews: A Journal of Microbiology & Virology. 2024; ():-.
How to cite this URL: Swapnil Chaturvedi, Indira P Sarethy. Aureobasidium pullulans- The Versatile Microcolonial Fungus for Industrial Production of Natural Products. Research & Reviews: A Journal of Microbiology & Virology. 2024; ():-. Available from: https://journals.stmjournals.com/rrjomv/article=2024/view=144768



References

  1. An, J.M., Shahriar, S.S., Hasan, M.N., Cho, S. and Lee, Y.K., 2021. Carboxymethyl cellulose, pluronic, and pullulan-based compositions efficiently enhance antiadhesion and tissue regeneration properties without using any drug molecules. ACS applied materials & interfaces, 13(14), pp.15992-16006.
  2. Arzanlou, M. and Khodaei, S., 2012. Aureobasidium iranianum, a new species on bamboo from Iran. Mycosphere, 3(4), pp.404-408.
  3. Ashish, P. and Pratibha, J., 2018. Aureobasidium khasianum (Aureobasidiaceae) a novel species with distinct morphology. Phytotaxa, 374(3), pp.257-262.
  4. Bhat, M.K. and Hazlewood, G.P., 2001. Enzymology and other characteristics of cellulases and xylanases.
  5. Bozoudi, D. and Tsaltas, D., 2018. The multiple and versatile roles of Aureobasidium pullulans in the vitivinicultural sector. Fermentation, 4(4), p. Bozoudi, D. and 85.
  6. Cao, W., Chen, X., Luo, J., Yin, J., Qiao, C. and Wan, Y., 2016. High molecular weight β-poly (l-malic acid) produced by A. pullulans with Ca2+ added repeated batch culture. International journal of biological macromolecules, 85, pp.192-199.
  7. Černoša, A., Sun, X., Gostinčar, C., Fang, C., Gunde-Cimerman, N. and Song, Z., 2021. Virulence traits and population genomics of the black yeast Aureobasidium melanogenum. Journal of Fungi, 7(8), p.665.
  8. Chaturvedi, S. and Sarethy, I.P., 2021. Virtual screening of Compounds from Microcolonial Fungal Strain TD-062 Obtained from the Thar Desert of India. Current Trends in Biotechnology and Pharmacy, 15(6), pp.62-66.
  9. Chen, G., Zhu, Y., Zhang, G., Liu, H., Wei, Y., Wang, P., Wang, F., Xian, M., Xiang, H. and Zhang, H., 2019. Optimizati on and characterization of pullulan production by a newly isolated high-yielding strain Aureobasidium melanogenum. Preparative Biochemistry and Biotechnology, 49(6), pp.557-566.
  10. Chen, S., Zheng, H., Gao, J., Song, H. and Bai, W., 2023. High-level production of pullulan and its biosynthesis regulation in Aureobasidium pullulans BL06. Frontiers in Bioengineering and Biotechnology, 11, p.1131875.
  11. Chen, T.J., Liu, G.L., Wei, X., Wang, K., Hu, Z., Chi, Z. and Chi, Z.M., 2020. A multidomain α-glucan synthetase 2 (AmAgs2) is the key enzyme for pullulan biosynthesis in Aureobasidium melanogenum P16. International journal of biological macromolecules, 150, pp.1037-1045.
  12. Chi, Z., Chi, Z., Zhang, T., Liu, G., Li, J. and Wang, X., 2009. Production, characterization and gene cloning of the extracellular enzymes from the marine-derived yeasts and their potential applications. Biotechnology Advances, 27(3), pp.236-255.
  13. Chi, Z., Wang, F., Chi, Z., Yue, L., Liu, G. and Zhang, T., 2009. Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied microbiology and biotechnology, 82, pp.793-804.
  14. Chi, Z., Yan, K., Gao, L., Li, J., Wang, X. and Wang, L., 2008. Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. Journal of the Marine Biological Association of the United Kingdom, 88(7), pp.1347-1352.
  15. Crous, P.W., Summerell, B.A., Swart, L., Denman, S., Taylor, J.E., Bezuidenhout, C.M., Palm, M.E., Marincowitz, S. and Groenewald, J.Z., 2011. Fungal pathogens of Proteaceae. Persoonia-Molecular Phylogeny and Evolution of Fungi, 27(1), pp.20-45.
  16. Dailin, D.J., Low, L.Z.M.I., Kumar, K., Abd Malek, R., Natasya, K.H. and Keat, H.C., 2019. Agro-industrial waste: A potential feedstock for pullulan production. Biosciences Biotechnology Research Asia, 16(2), pp.229-250.
  17. Di Francesco, A., Ugolini, L., D’Aquino, S., Pagnotta, E. and Mari, M., 2017. Biocontrol of Monilinia laxa by Aureobasidium pullulans strains: Insights on competition for nutrients and space. International journal of food microbiology, 248, pp.32-38.
  18. Di Francesco, A., Ugolini, L., Lazzeri, L. and Mari, M., 2015. Production of volatile organic compounds by Aureobasidium pullulans as a potential mechanism of action against postharvest fruit pathogens. Biological Control, 81, pp.8-14.
  19. Di Francesco, A., Zajc, J. and Stenberg, J.A., 2023. Aureobasidium spp.: diversity, versatility, and agricultural utility. Horticulturae, 9(1), p.59.
  20. Ding, Y., Jiang, F., Chen, L., Lyu, W., Chi, Z., Liu, C. and Chi, Z., 2020. An alternative hard capsule prepared with the high molecular weight pullulan and gellan: Processing, characterization, and in vitro drug release. Carbohydrate polymers, 237, p.116172.
  21. Duan, Y., Li, K., Wang, H., Wu, T., Zhao, Y., Li, H., Tang, H. and Yang, W., 2020. Preparation and evaluation of curcumin grafted hyaluronic acid modified pullulan polymers as a functional wound dressing material. Carbohydrate polymers, 238, p.116195.
  22. Feng, Z., Chen, S., Ahmad, A., Chen, L. and Bai, W., 2022. Ultra-high molecular weight pullulan-based material with high deformability and shape-memory properties. Carbohydrate Polymers, 295, p.119836.
  23. Freimoser, F.M., Rueda-Mejia, M.P., Tilocca, B. and Migheli, Q., 2019. Biocontrol yeasts: Mechanisms and applications. World Journal of Microbiology and Biotechnology, 35, pp.1-19.
  24. Gautério, G.V., da Silva, L.G.G., Hübner, T., da Rosa Ribeiro, T. and Kalil, S.J., 2020. Maximization of xylanase production by Aureobasidium pullulans using a by-product of rice grain milling as xylan source. Biocatalysis and Agricultural Biotechnology, 23, p.101511.
  25. Ghorbani, F., Zamanian, A., Behnamghader, A. and Joupari, M.D., 2020. Bioactive and biostable hyaluronic acid-pullulan dermal hydrogels incorporated with biomimetic hydroxyapatite spheres. Materials Science and Engineering: C, 112, p.110906.
  26. Gostinčar, C., Ohm, R.A., Kogej, T., Sonjak, S., Turk, M., Zajc, J., Zalar, P., Grube, M., Sun, H., Han, J. and Sharma, A., 2014. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species. BMC genomics, 15, pp.1-29.
  27. Ibrahim, S.N.M.M., Bankeeree, W., Prasongsuk, S., Punnapayak, H. and Lotrakul, P., 2022. Production and characterization of thermostable acidophilic β-mannanase from Aureobasidium pullulans NRRL 58524 and its potential in mannooligosaccharide production from spent coffee ground galactomannan. 3 Biotech, 12(9), p.237.
  28. Jiang, H., Chen, T.J., Chi, Z., Hu, Z., Liu, G.L., Sun, Y., Zhang, S.H. and Chi, Z.M., 2019. Macromolecular pullulan produced by Aureobasidium melanogenum 13-2 isolated from the Taklimakan desert and its crucial roles in resistance to the stress treatments. International journal of biological macromolecules, 135, pp.429-436.
  29. Jiang, N., Fan, X. and Tian, C., 2021. Identification and characterization of leaf-inhabiting fungi from Castanea plantations in China. Journal of Fungi, 7(1), p.64.
  30. Kalantari, E., Deopurkar, R. and Kapadnis, B., 2006. Antimicrobial activity of indigenous strains of Aureobasidium isolated from Santalum album leaves. Iranian Journal of Pharmaceutical Research, 5(1), pp.59-64.
  31. Kremnický, L. and Biely, P., 1997. β-Mannanolytic system of Aureobasidium pullulans. Archives of microbiology, 167, pp.350-355.
  32. Leathers, T.D. and Manitchotpisit, P., 2013. Production of poly (β-L-malic acid)(PMA) from agricultural biomass substrates by Aureobasidium pullulans. Biotechnology letters, 35, pp.83-89.
  33. Lee, D.H., Cho, S.E., Oh, J.Y., Cho, E.J. and Kwon, S., 2021. A novel species of Aureobasidium (Dothioraceae) recovered from Acer pseudosieboldianum in Korea. Journal of Asia-Pacific Biodiversity, 14(4), pp.657-661.
  34. Leonowicz, A., Cho, N., Luterek, J., Wilkolazka, A., Wojtas‐Wasilewska, M., Matuszewska, A., Hofrichter, M., Wesenberg, D. and Rogalski, J., 2001. Fungal laccase: properties and activity on lignin. Journal of Basic Microbiology: An International Journal on Biochemistry, Physiology, Genetics, Morphology, and Ecology of Microorganisms, 41(3‐4), pp.185-227.
  35. Li, X., Qian, P., Wu, S.G. and Yu, H.Y., 2014. Characterization of an organic solvent-tolerant lipase from Idiomarina sp. W33 and its application for biodiesel production using Jatropha oil. Extremophiles, 18, pp.171-178.
  36. Li, Y., Cai, H., Zhao, M., Zhang, H. and Feng, F., 2015. Screening and identification of high-yield thermostable lipase producing microorganisms. Biotechnology Bulletin, 31(1), p.144.
  37. Liu, N.N., Chi, Z., Liu, G.L., Chen, T.J., Jiang, H., Hu, Z. and Chi, Z.M., 2018. α-Amylase, glucoamylase and isopullulanase determine molecular weight of pullulan produced by Aureobasidium melanogenum P16. International journal of biological macromolecules, 117, pp.727-734.
  38. Manitchotpisit, P., Watanapoksin, R., Price, N.P., Bischoff, K.M., Tayeh, M., Teeraworawit, S., Kriwong, S. and Leathers, T.D., 2014. Aureobasidium pullulans as a source of liamocins (heavy oils) with anticancer activity. World Journal of Microbiology and Biotechnology, 30, pp.2199-2204.
  39. Merín, M.G. and de Ambrosini, V.I.M., 2018. Kinetic and metabolic behaviour of the pectinolytic strain Aureobasidium pullulans GM-R-22 during pre-fermentative cold maceration and its effect on red wine quality. International journal of food microbiology, 285, pp.18-26.
  40. Moraes, F.C., Antunes, J.C., Ramirez, L.M.F., Aprile, P., Franck, G., Chauvierre, C., Chaubet, F. and Letourneur, D., 2020. Synthesis of cationic quaternized pullulan derivatives for miRNA delivery. International journal of pharmaceutics, 577, p.119041.
  41. Morozova, O.V., Shumakovich, G.P., Gorbacheva, M.A., Shleev, S.V. and Yaropolov, A.I., 2007. “Blue” laccases. Biochemistry (Moscow), 72, pp.1136-1150.
  42. Mounir, R., Durieux, A., Bodo, E., Allard, C., Simon, J.P., Achbani, E.H., El-Jaafari, S., Douira, A. and Jijakli, M.H., 2007. Production, formulation and antagonistic activity of the biocontrol like-yeast Aureobasidium pullulans against Penicillium expansum. Biotechnology letters, 29, pp.553-559.
  43. Mulay, Y.R. and Deopurkar, R.L., 2018. Purification, characterization of amylase from indigenously isolated aureobasidium pullulans Cau 19 and its bioconjugates with gold nanoparticles. Applied biochemistry and biotechnology, 184, pp.644-658.
  44. Nasr, S., Mohammadimehr, M., Geranpayeh Vaghei, M., Amoozegar, M.A. and Shahzadeh Fazeli, S.A., 2018. Aureobasidium mangrovei sp. nov., an ascomycetous species recovered from Hara protected forests in the Persian Gulf, Iran. Antonie Van Leeuwenhoek, 111(9), pp.1697-1705.
  45. Nishimura, T., Shishi, S., Sasaki, Y. and Akiyoshi, K., 2020. Thermoresponsive polysaccharide graft polymer vesicles with tunable size and structural memory. Journal of the American Chemical Society, 142(27), pp.11784-11790.
  46. Onetto, C.A., Borneman, A.R. and Schmidt, S.A., 2020. Investigating the effects of Aureobasidium pullulans on grape juice composition and fermentation. Food microbiology, 90, p.103451.
  47. Onetto, C.A., Schmidt, S.A., Roach, M.J. and Borneman, A.R., 2020. Comparative genome analysis proposes three new Aureobasidium species isolated from grape juice. FEMS Yeast Research, 20(6), p.foaa052.
  48. Pinto, C., Custódio, V., Nunes, M., Songy, A., Rabenoelina, F., Courteaux, B., Clément, C., Gomes, A.C. and Fontaine, F., 2018. Understand the potential role of Aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by Diplodia seriata. Frontiers in Microbiology, 9, p.3047.
  49. Prajapati, V.D., Chaudhari, A.M., Gandhi, A.K. and Maheriya, P., 2018. Pullulan based oral thin film formulation of zolmitriptan: Development and optimization using factorial design. International journal of biological macromolecules, 107, pp.2075-2085.
  50. Prasongsuk, S., Ployngam, S., Wacharasindhu, S., Lotrakul, P. and Punnapayak, H., 2013. Effects of sugar and amino acid supplementation on Aureobasidium pullulans NRRL 58536 antifungal activity against four Aspergillus species. Applied microbiology and biotechnology, 97, pp.7821-7830.
  51. Nongkhai, S.N., Piemthongkham, P., Bankeeree, W., Punnapayak, H., Lotrakul, P. and Prasongsuk, S., 2023. Xylooligosaccharides produced from sugarcane leaf arabinoxylan using xylanase from Aureobasidium pullulans NRRL 58523 and its prebiotic activity toward Lactobacillus spp. Heliyon, 9(11).
  52. Rich, J.O., Leathers, T.D., Anderson, A.M., Bischoff, K.M. and Manitchotpisit, P., 2013. Laccases from Aureobasidium pullulans. Enzyme and microbial technology, 53(1), pp.33-37.
  53. Shah, S.A., Sohail, M., Minhas, M.U., Khan, S., Hussain, Z., Mahmood, A., Kousar, M., Thu, H.E. and Abbasi, M., 2021. Curcumin-laden hyaluronic acid-co-Pullulan-based biomaterials as a potential platform to synergistically enhance the diabetic wound repair. International journal of biological macromolecules, 185, pp.350-368.
  54. Sheng, L., Tong, Q. and Ma, M., 2016. Why sucrose is the most suitable substrate for pullulan fermentation by Aureobasidium pullulans CGMCC1234. Enzyme and Microbial Technology, 92, pp.49-55.
  55. Singh, R., Gaur, R., Bansal, S., Biswas, P., Pandey, P.K., Jamal, F., Tiwari, S. and Gaur, M.K., 2015. Aureobasidium pullulans-an industrially important pullulan producing black yeast. Int J Curr Microbiol App Sci, 4(10), pp.605-622.
  56. Singh, R.S. and Kaur, N., 2019. Understanding response surface optimization of medium composition for pullulan production from de-oiled rice bran by Aureobasidium pullulans. Food Science and Biotechnology, 28, pp.1507-1520.
  57. Singh, R.S. and Saini, G.K., 2012. Biosynthesis of pullulan and its applications in food and pharmaceutical industry. Microorganisms in sustainable agriculture and biotechnology, pp.509-553.
  58. Singh, R.S., Kaur, N. and Kennedy, J.F., 2015. Pullulan and pullulan derivatives as promising biomolecules for drug and gene targeting. Carbohydrate Polymers, 123, pp.190-207.
  59. Singh, R.S., Saini, G.K. and Kennedy, J.F., 2021. Pullulan production in stirred tank reactor by a colour-variant strain of Aureobasidium pullulans FB-1. Carbohydrate Polymer Technologies and Applications, 2, p.100086.
  60. Wang, C.B., Jiang, N., Tu, Y., Zhu, Y.Q., Xue, H. and Li, Y., 2022. Aureobasidium aerium (Saccotheciaceae, Dothideales), a new yeast-like fungus from the air in Beijing, China. Phytotaxa, 544(2), pp.185-192.
  61. Wang, J.R., Li, Y.Y., Xu, S.D., Li, P., Liu, J.S. and Liu, D.N., 2013. High-level expression of pro-form lipase from Rhizopus oryzae in Pichia pastoris and its purification and characterization. International Journal of Molecular Sciences, 15(1), pp.203-217.
  62. Wang, M., Danesi, P., James, T.Y., Al‐Hatmi, A.M., Najafzadeh, M.J., Dolatabadi, S., Ming, C., Liou, G.Y., Kang, Y. and de Hoog, S., 2019. Comparative pathogenicity of opportunistic black yeasts in Aureobasidium. Mycoses, 62(9), pp.803-811.
  63. Wang, W.L., Chi, Z.M., Chi, Z., Li, J. and Wang, X.H., 2009. Siderophore production by the marine-derived Aureobasidium pullulans and its antimicrobial activity. Bioresource technology, 100(9), pp.2639-2641.
  64. Wei, X., Liu, G.L., Jia, S.L., Chi, Z., Hu, Z. and Chi, Z.M., 2021. Pullulan biosynthesis and its regulation in Aureobasidium spp. Carbohydrate Polymers, 251, p.117076.
  65. Xiao, Q. and Lim, L.T., 2018. Pullulan-alginate fibers produced using free surface electrospinning. International journal of biological macromolecules, 112, pp.809-817.
  66. Xue, S.J., Chen, L., Jiang, H., Liu, G.L., Chi, Z.M., Hu, Z. and Chi, Z., 2019. High pullulan biosynthesis from high concentration of glucose by a hyperosmotic resistant, yeast-like fungal strain isolated from a natural comb-honey. Food chemistry, 286, pp.123-128.
  67. Zajc, J., Černoša, A., Sun, X., Fang, C., Gunde-Cimerman, N., Song, Z. and Gostinčar, C., 2022. From glaciers to refrigerators: The population genomics and biocontrol potential of the black yeast Aureobasidium subglaciale. Microbiology Spectrum, 10(4), pp.e01455-22.
  68. Zajc, J., Černoša, A., Sun, X., Fang, C., Gunde-Cimerman, N., Song, Z. and Gostinčar, C., 2022. From glaciers to refrigerators: The population genomics and biocontrol potential of the black yeast Aureobasidium subglaciale. Microbiology Spectrum, 10(4), pp.e01455-22.
  69. Zalar, P., Gostinčar, C., De Hoog, G.S., Uršič, V., Sudhadham, M. and Gunde-Cimerman, N., 2008. Redefinition of Aureobasidium pullulans and its varieties. Studies in mycology, 61(1), pp.21-38.
  70. Zhu, M., Zhang, L., Yang, F., Cha, Y., Li, S., Zhuo, M., Huang, S. and Li, J., 2019. A Recombinant β-Mannanase from Thermoanaerobacterium aotearoense SCUT27: Biochemical characterization and its thermostability improvement. Journal of agricultural and food chemistry, 68(3), pp.818-825.
  71. Zhu, X., Gibbons, J., Garcia-Rivera, J., Casadevall, A. and Williamson, P.R., 2001. Laccase of Cryptococcus neoformans is a cell wall-associated virulence factor. Infection and immunity, 69(9), pp.5589-5596.
  72. Zhang, L., Liu, J., Zheng, X., Zhang, A., Zhang, X. and Tang, K., 2019. Pullulan dialdehyde crosslinked gelatin hydrogels with high strength for biomedical applications. Carbohydrate polymers, 216, pp.45-53.

Ahead of Print Subscription Original Research
Volume
Received March 14, 2024
Accepted April 2, 2024
Published May 1, 2024