Activity Quantification of Lu-177 SPECT/CT Imaging for Calibration Factor Analysis in Clinical Radionuclide Dosimetry

Open Access

Year : 2023 | Volume :12 | Issue : 02 | Page : 9-22
By

    Madhulika Mehrotra

  1. Sanjana Ballal

  2. Prashant Mishra

  3. C.S. Bal

  1. Women Scientist Fellow, All India Institute of Medical Sciences (AIIMS), New Delhi, India
  2. Medical Physicist, All India Institute of Medical Sciences (AIIMS), New Delhi, India
  3. Student, All India Institute of Medical Sciences (AIIMS), New Delhi, India
  4. Professor and Head, All India Institute of Medical Sciences (AIIMS), New Delhi, India

Abstract

Purpose: To evaluate the calibration factor (CF) at three-time points with the same protocol & acquisition parameters for the images of Lu-177 activity, scanned by two different SPECT/CTs (GE & MEDISO) using a cylindrical Jaszczak phantom with cold inserts, filled with uniform activity in water and to analyze the changes in the calibration factor data with time. The purpose of the study is to quantitatively analyze the first step (calibration acquisition) in clinical dosimetry workflow. Methods: The study was performed two times as SET-I and SET-II, with a gap of six months with the same phantom and SPECT/CTs for three-time points (Day 0, Day 4 & Day 7). A known activity of Lu-177 was filled in the Jaszczak phantom with uniform activity in the water solution. The scans were performed by the two dual- headed SPECT/CTs (GE & MEDISO) with high energy general purpose (HEGP) collimator. To calculate the calibration factor, the counts are evaluated from reconstructed images for the same volume of interest (VOI) to convert into the activity. Results: In the SET-I study, the CFs obtained from GE SPECT/CT showed that the CF remains approximately constant for two-time points (Day 0 & Day 7) and was less on Day 4. For MEDISO SPECT/CT, the CF remains approximately constant for two-time points (Day 4 & Day 7), but on Day 0, the CF was less. In the SET-II study, the CF obtained from GE SPECT/CT and MEDISO SPECT/CT, at three-time points shows that the CF remains approximately constant for the uniformly distributed Lu-177 activity in the phantom. Conclusion: Our study supports that uniform activity distributed over the entire phantom volume and reconstructed images obtained from the SPECT/CT with attenuation & scatter corrections are essential steps for accurately evaluating calibration factors in clinical dosimetry workflow.

Keywords: calibration factor, Lu-177, SPECT/CT, clinical radionuclide dosimetry, Jaszczak phantom

[This article belongs to Research & Reviews : Journal of Medical Science and Technology(rrjomst)]

How to cite this article: Madhulika Mehrotra, Sanjana Ballal, Prashant Mishra, C.S. Bal , Activity Quantification of Lu-177 SPECT/CT Imaging for Calibration Factor Analysis in Clinical Radionuclide Dosimetry rrjomst 2023; 12:9-22
How to cite this URL: Madhulika Mehrotra, Sanjana Ballal, Prashant Mishra, C.S. Bal , Activity Quantification of Lu-177 SPECT/CT Imaging for Calibration Factor Analysis in Clinical Radionuclide Dosimetry rrjomst 2023 {cited 2023 Aug 21};12:9-22. Available from: https://journals.stmjournals.com/rrjomst/article=2023/view=116205

Full Text PDF Download

Browse Figures

References

  1. Ersahin D, Doddamane I, Cheng D. Targeted radionuclide therapy. Cancers (Basel). 2011; 3 (4): 3838–3855. doi: 10.3390/cancers3043838.
  2. Radojewski P, Dumont R, Marincek N, Brunner P, Mäcke HR, Müller-Brand J, Briel M, Walter MA. Towards tailored radiopeptide therapy. Eur J Nucl Med Mol Imaging. 2015; 42 (8): 1231–1237. doi: 1007/s00259-015-3030-9.
  3. Strigari L, Konijnenberg M, Chiesa C, Bardies M, Du Y, Gleisner KS, Lassmann M, Flux G. The evidence base for using internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging. 2014; 41 (10): 1976–1988. doi: 10.1007/s00259-014-2824-5.
  4. Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjögreen-Gleisner K. MIRD pamphlet no. 26: joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J Nucl Med. 2016; 57 (1): 151–162. doi: 10.2967/jnumed.115.159012.
  5. Dash A, Russ Knapp FF, Pillai MRA. Targeted radionuclide therapy—an overview. Curr Radiopharm. 2013; 6 (3): 152–180. doi: 10.2174/18744710113066660023.
  6. Santoro L, Mora-Ramirez E, Trauchessec D, Chouaf S, Eustache P, Pouget J-P, Kotzki P-O, Bardiès M, Deshayes E. Implementation of patient dosimetry in the clinical practice after targeted radiotherapy using [177Lu-[DOTAo, Tyr3]-octreotate. EJNMMI Res. 2018; 8 (1): 103. doi: 10.1186/s13550-018-0459-4.
  7. Kashyap R, Hofman MS, Michael M, Kong G, Akhurst T, Eu P, Zannino D, Hicks RJ. Favourable outcomes of 177Lu-octreotate peptide receptor chemoradionuclide therapy in patients with FDG-avid neuroendocrine tumours. Eur J Nucl Med. 2015; 42 (2): 176–185. doi: 10.1007/s00259-014-2906-4.
  8. Hennrich U, Kopka K. Lutathera®: the first FDA-and EMA-approved radiopharmaceutical for peptide receptor radionuclide therapy. Pharmaceuticals (Basel). 2019; 12 (3): 114. doi: 3390/ph12030114.
  9. Stabin M. The case for patient-specific dosimetry in radionuclide therapy. Cancer Biother Radiopharm. 2008; 23 (3): 273–284.(doi: 10.1089/cbr.2007.0445.
  10. International Atomic Energy Agency. Coordinated Research Project. Dosimetry in molecular radiotherapy for personalized patient treatments. [Online]. Available at https://www.iaea.org/projects/crp/e23005 [Accessed on September 27, 2021].
  11. Bardiès M, Gear JI. Scientific developments in imaging and dosimetry for molecular radiotherapy. Clin Oncol. 2021;33 (2): 117–124. doi: 1016/j.clon.2020.11.005.
  12. Sanders JC, Kuwert T, Hornegger J, Ritt P. Quantitative SPECT/CT imaging of 177Lu with in vivo validation in patients undergoing peptide receptor radionuclide therapy. Mol Imaging Biol. 2015; 17 (4): 585–593. doi: 10.1007/s11307-014-0806-4.
  13. Lassmann M, Eberlein U, Tran-Gia J. Multicentre trials on standardised quantitative imaging and dosimetry for radionuclide therapies. Clin Oncol (R Coll Radiol). 2021; 33: 125–130. doi: 10.1016/j.clon.2020.11.008.
  14. Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, Ljungberg M. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med. 2012; 53 (8): 1310–1325. doi: 10.2967/jnumed.111.100123.
  15. Dewaraja Y, Frey E, Sunderland J, Uribe C. Dosimetry challenge. [Online]. Available at https://therapy.snmmi.org/SNMMI-THERAPY/Dosimetry_Challenge.aspx [Accessed on October 13, 2021].
  16. Mora‐Ramirez E, Santoro L, Cassol E, Ocampo‐Ramos JC, Clayton N, Kayal G, Chouaf S, Trauchessec D, Pouget JP, Kotzki PO, Deshayes E. Comparison of commercial dosimetric software platforms in patients treated with 177Lu‐DOTATATE for peptide receptor radionuclide therapy. Med Phys. 2020; 47 (9): 4602–4615. doi: 10.1002/mp.14375.
  17. Peters SMB, Meyer Viol SL, van der Werf NR, de Jong N, van Velden FHP, Meeuwis A, Konijnenberg MW, Gotthardt M, de Jong HWAM, Segbers M. Variability in lutetium-177 SPECT quantification between different state-of-the-art SPECT/CT systems. EJNMMI Phys. 2020; 7 (1): Article 9. doi: 10.1186/s40658-020-0278-3.
  18. Beauregard J-M, Hofman MS, Pereira JM, Eu P, Hicks RJ. Quantitative 177Lu SPECT (QSPECT) imaging using a commercially available SPECT/CT system. Cancer Imaging. 2011; 11 (1): 56–66. doi: 10.1102/1470-7330.2011.0012.
  19. Seret A, Nguyen D, Bernard C. Quantitative capabilities of four state-of-the-art SPECT-CT cameras. EJNMMI Res. 2012; 2 (1): 45. doi: 10.1186/2191-219X-2-45.
  20. Tran-Gia J, Denis-Bacelar AM, Ferreira KM, Robinson AP, Calvert N, Fenwick AJ, Finocchiaro D, Fioroni F, Grassi E, Heetun W, Jewitt SJ. A multicentre and multi-national evaluation of the accuracy of quantitative Lu-177 SPECT/CT imaging performed within the MRTDosimetry project. EJNMMI Phys. 2021;8: Article 55. doi: 1186/s40658-021-00397-0.
  21. Zhao W, Esquinas PL, Hou X, Uribe CF, Gonzalez M, Beauregard JM, Dewaraja YK, Celler A. Determination of gamma camera calibration factors for quantitation of therapeutic radioisotopes. EJNMMI Phys. 2018; 5: Article 8. doi: 10.1186/s40658-018-0208-9.
  22. Uribe CF, Esquinas PL, Tanguay J, Gonzalez M, Gaudin E, Beauregard JM, Celler A. Accuracy of 177Lu activity quantification in SPECT imaging: a phantom study. EJNMMI Phys. 2017;4: Article 2. doi: 10.1186/s40658-016-0170-3.
  23. Peters SM, van der Werf NR, Segbers M, van Velden FH, Wierts R, Blokland KA, Konijnenberg MW, Lazarenko SV, Visser EP, Gotthardt M. Towards standardization of absolute SPECT/CT quantification: a multi-center and multi-vendor phantom study. EJNMMI Phys. 2019; 6: Article 29. doi: 10.1186/s40658-019-0268-5.
  24. Sgouros G, Bolch WE, Chiti A, Dewaraja YK, Emfietzoglou D, Hobbs RF, Konijnenberg M, Sjögreen-Gleisner K, Strigari L, Yen TC, Howell RW. ICRU REPORT 96, dosimetry-guided radiopharmaceutical therapy. J ICRU. 2021; 21 (1): 1–212. doi: 1177/14736691211060117.
  25. De Nijs R, Lagerburg V, Klausen TL, Holm S. Improving quantitative dosimetry in 177Lu-DOTATATE SPECT by energy window-based scatter corrections. Nucl Med Commun. 2014; 35 (5): 522–533. doi: 10.1097/MNM.0000000000000079.
  26. D’Arienzo M, Cozzella ML, Fazio A, De Felice P, Iaccarino G, D’Andrea M, Ungania S, Cazzato M, Schmidt K, Kimiaei S, Strigari L. Quantitative 177Lu SPECT imaging using advanced correction algorithms in non-reference geometry. Phys Med. 2016; 32 (12): 1745–1752. doi: 10.1016/j.ejmp.2016.09.014.
  27. Ogawa K, Harata Y, Ichihara T, Kubo A, Hashimoto S. A practical method for position-dependent Compton-scatter correction in single photon emission CT. IEEE Trans Med Imaging. 1991; 10: 408–412. doi: 10.1109/42.97591.
  28. Blinder S, Celler A, Wells RG, Thomson D, Harrop R. Experimental verification of 3D detector response compensation using the OSEM reconstruction method. IEEE Nucl Sci Symp Conf Rec. 2001; 4: 2174–2178. doi: 10.1109/NSSMIC.2001.1009254.
  29. Santoro L, Pitalot L, Trauchessec D, Mora-Ramirez E, Kotzki PO, Bardiès M, Deshayes E. Clinical implementation of PLANET® Dose for dosimetric assessment after [177Lu] Lu-DOTA-TATE: comparison with Dosimetry Toolkit® and OLINDA/EXM® V1. 0. EJNMMI Res. 2021; 11: Article 1. doi: 10.1186/s13550-020-00737-8.
  30. Shcherbinin S, Piwowarska-Bilska H, Celler A, Birkenfeld B. Quantitative SPECT/CT reconstruction for 177Lu and 177Lu/90Y targeted radionuclide therapies. Phys Med Biol. 2012; 57: 5733–5747. doi:1088/0031-9155/57/18/5733.
  31. Hippeläinen E, Tenhunen M, Mäenpää H, Sohlberg A. Quantitative accuracy of 177Lu SPECT reconstruction using different compensation methods: phantom and patient studies. EJNMMI Res. 2016; 6 (1): Article 16. doi: 10.1186/s13550-016-0172-0.
  32. Frezza A, Desport C, Uribe C, Zhao W, Celler A, Després P, Beauregard JM. Comprehensive SPECT/CT system characterization and calibration for 177Lu quantitative SPECT (QSPECT) with dead-time correction. EJNMMI Phys. 2020; 7 (1): Article 10. doi: 10.1186/s40658-020-0275-6.
  33. Uribe CF, Esquinas PL, Gonzalez M, Zhao W, Tanguay J, Celler A. Dead-time effects in quantification of 177Lu activity for radionuclide therapy. EJNMMI Phys. 2018; 5: Article 2. doi: 10.1186/s40658-017-0202-7.

Regular Issue Open Access Original Research
Volume 12
Issue 02
Received July 20, 2023
Accepted July 25, 2023
Published August 21, 2023