Role of Neuropeptides in the Treatment of Major Depression Disorder: The Recent Updates

Year : 2024 | Volume : | : | Page : –
By

Shivani panwar,

Abhimanyu Chauhan,

Chakresh Kumar Jain,

  1. Student Department of Biotechnology, Jaypee Institute of Information Technology, Noida Uttar Pradesh India
  2. Research Scholar Department of Biotechnology, Jaypee Institute of Information Technology, Noida Uttar Pradesh India
  3. Associate Professor Department of Biotechnology, Jaypee Institute of Information Technology, Noida Uttar Pradesh India

Abstract

Revelation of the part of neuropeptides as signaling atoms within the nervous system raised trust within the pharmaceutical field approximately 25. long time back Many neuropeptides, especially CRH, AVP, and substance P . whose receptors are presently focused on by little atoms to diminish side effects of discouragement and uneasiness, shows up to be related to the improvement and movement of temperament disarranges trouble. Neurotrophins, not exactly neuropeptides, may also play a unique role in antidepressant activity and are likely characteristic of depression. Neurotensin (NT) is responsible for schizophrenia-like symptoms, adding credence to the idea that drugs that disrupt the NT system may have antipsychotic properties. Finally, neuropeptides could be used to treat sleep disorders. that are currently treated with sleeping pills but have significant side effects. Axel Steiger’s research indicates that certain neuropeptides can improve sleep quality, even when administered peripherally. Anxiety and despair have increased in today’s culture. This slant contains a colossal affect on people’s mental health and in this way contributes essentially to ailment and, within the most exceedingly bad cases, suicide . Despite the availability of several antidepressants and anxiolytics, Morden was unable to bring patients into remission. Because the pathophysiology of anxiety and depression remains largely unknown, researchers have lost focus on neuropeptides; Many unknown studies have turned their attention to neuropeptides, a large class of signaling molecules in the nervous system.

Keywords: Role of Neuropeptides in the Treatment of Major Depression Disorder: The Recent Updates

How to cite this article: Shivani panwar, Abhimanyu Chauhan, Chakresh Kumar Jain. Role of Neuropeptides in the Treatment of Major Depression Disorder: The Recent Updates. Research & Reviews : A Journal of Life Sciences. 2024; ():-.
How to cite this URL: Shivani panwar, Abhimanyu Chauhan, Chakresh Kumar Jain. Role of Neuropeptides in the Treatment of Major Depression Disorder: The Recent Updates. Research & Reviews : A Journal of Life Sciences. 2024; ():-. Available from: https://journals.stmjournals.com/rrjols/article=2024/view=170012



References

  1. Kessler RC, et al.; National Comorbidity Survey Replication (2003) The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA 289(23):3095–3105.
  2. Wittchen HU, et al. (2011) The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol 21(9):655–679.
  3. de Kloet ER, Joëls M, Holsboer F (2005) Stress and the brain: From adaptation to disease. Nat Rev Neurosci 6(6):463–475
  4. Nestler EJ, et al. (2002) Neurobiology of depression. Neuron 34(1):13–25.
  5. McEwen BS (2008) Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2-3):174–185.
  6. Labonté B, et al. (2013) Genome-wide methylation changes in the brains of suicide completers. Am J Psychiatry 170(5):511–520.
  7. Vialou V, Feng J, Robison AJ, Nestler EJ (2013) Epigenetic mechanisms of depression and antidepressant action. Annu Rev Pharmacol Toxicol 53:59–87.
  8. Blier P, de Montigny C (1994) Current advances and trends in the treatment of depression Trends Pharmacol Sci 15(7):220–226
  9. Millan MJ (2006) Multi-target strategies for the improved treatment of depressive states: Conceptual foundations and neuronal substrates, drug discovery and therapeutic applications. Pharmacol Ther 110(2):135–370.
  10. Wang PS, Aguilar-Gaxiola S, Alonso J, Angermeyer MC, Borges G, Bromet EJ, et al. Use of mental health services for anxiety, mood, and substance disorders in 17 countries in the WHO World Mental Health Surveys. Lancet. 2007;370:841–50.
  11. Tatemoto, K., Rokaeus, A., Jornvall, H., McDonald, T. J., and Mutt, V. (1983). Galanin – a novel biologically active peptide from the porcine intestine. FEBS Lett.164, 124–128. doi: 10.1016/0014-5793(83)80033-7
  12. RC Kessler, et al., The epidemiology of major depressive disorder: Results from the National Comorbidity Survey Replication (NCS-R). JAMA; National Comorbidity Survey Replication 289, 3095–3105(2003).
  13. HU Wittchen, et al., The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur Neuropsychopharmacol21, 655–679 (2011).
  14. ER de Kloet, M Joëls, F Holsboer, Stress, and the brain: From adaptation to disease. Nat Rev Neurosci 6, 463–475 (2005).
  15. Kormos V., Gaszner B. Role of Neuropeptides in Anxiety, Stress, and Depression: From Animals to Humans. Neuropeptides. 2013;47:401–419. doi: 10.1016/j.npep.2013.10.014. [PubMed] [CrossRef] [Google Scholar] [Ref list]
  16. Rana T., Behl T., Sehgal A., Singh S., Sharma N., Abdeen A., Ibrahim S.F., Mani V., Iqbal M.S., Bhatia S., et al. Exploring the Role of Neuropeptides in Depression and Anxiety. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2022;114:110478. doi: 10.1016/j.pnpbp.2021.110478. [PubMed] [CrossRef] [Google Scholar] [Ref list]
  17. Hoyer D., Bartfai T. Neuropeptides and Neuropeptide Receptors: Drug Targets, and Peptide and Non-Peptide Ligands: A Tribute to Prof. Dieter Seebach. Chem. Biodivers. 2012;9:2367–2387. doi: 10.1002/cbdv.201200288. [PubMed] [CrossRef] [Google Scholar] [Ref list]
  18. OMIM—Online Mendelian Inheritance in Man, OMIM® McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD, USA). 25 May 2022. [(accessed on 3 June 2022)]. Available online: https://omim.org/ [Ref list]
  19. Lach G., Schellekens H., Dinan T.G., Cryan J.F. Anxiety, Depression, and the Microbiome: A Role for Gut Peptides. Neurotherapeutics. 2018;15:36–59. doi: 10.1007/s13311-017-0585-0. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Ref list]
  20. Miller W.L. The Hypothalamic-Pituitary-Adrenal Axis: A Brief History. Horm. Res. Paediatr. 2018;89:212–223. doi: 10.1159/000487755. [PubMed] [CrossRef] [Google Scholar] [Ref list]
  21. Daskalakis N.P., Meijer O.C., de Kloet E.R. Mineralocorticoid Receptor and Glucocorticoid Receptor Work Alone and Together in Cell-Type-Specific Manner: Implications for Resilience Prediction and Targeted Therapy. Neurobiol. Stress. 2022;18:100455. doi: 10.1016/j.ynstr.2022.100455. [PMC free article] [PubMed] [CrossRef] [Google Scholar] [Ref list]
  22. Belvederi Murri M., Pariante C., Mondelli V., Masotti M., Atti A.R., Mellacqua Z., Antonioli M., Ghio L., Menchetti M., Zanetidou S., et al. HPA axis and Aging in Depression: Systematic Review and Meta-Analysis. Psychoneuroendocrinology. 2014;41:46–62. doi: 10.1016/j.psyneuen.2013.12.004. [PubMed] [CrossRef] [Google Scholar] [Ref list]
  23. Belvederi Murri M., Prestia D., Mondelli V., Pariante C., Patti S., Olivieri B., Arzani C., Masotti M., Respino M., Antonioli M., et al. The HPA axis in Bipolar Disorder: Systematic Review and Meta-Analysis. Psychoneuroendocrinology. 2016;63:327–342. doi: 10.1016/j.psyneuen.2015.10.014. [PubMed] [CrossRef] [Google Scholar]
  24. Juruena M.F., Bocharova M., Agustini B., Young A.H. Atypical Depression and Non-Atypical Depression: Is HPA axis Function a Biomarker? A Systematic Review. J. Affect. Disord. 2018;233:45–67. doi: 10.1016/j.jad.2017.09.052. [PubMed] [CrossRef] [Google Scholar]
  25. Petra A.I., Panagiotidou S., Hatziagelaki E., Stewart J.M., Conti P., Theoharides T.C. Gut-Microbiota-Brain Axis and Its Effect on Neuropsychiatric Disorders With Suspected Immune Dysregulation. Clin. Ther. 2015;37:984–995. doi: 10.1016/j.clinthera.2015.04.002. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  26. Rieder R., Wisniewski P.J., Alderman B.L., Campbell S.C. Microbes and Mental Health: A Review. Brain Behav. Immun. 2017;66:9–17. doi: 10.1016/j.bbi.2017.01.016. [PubMed] [CrossRef] [Google Scholar]
  27. Huo R., Zeng B., Zeng L., Cheng K., Li B., Luo Y., Wang H., Zhou C., Fang L., Li W., et al. Microbiota Modulate Anxiety-like Behavior and Endocrine Abnormalities in Hypothalamic-Pituitary-Adrenal Axis. Front. Cell. Infect. Microbiol. 2017;7:489. doi: 10.3389/fcimb.2017.00489. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  28. Frankiensztajn L.M., Elliott E., Koren O. The Microbiota and the Hypothalamus-Pituitary-Adrenocortical (HPA) Axis, Implications for Anxiety and Stress Disorders. Curr. Opin. Neurobiol. 2020;62:76–82. doi: 10.1016/j.conb.2019.12.003. [PubMed] [CrossRef] [Google Scholar]
  29. Juruena M.F., Eror F., Cleare A.J., Young A.H. The Role of Early Life Stress in HPA axis and Anxiety. In: Kim Y.-K., editor. Anxiety Disorders. Volume 1191. Advances in Experimental Medicine and Biology; Springer; Singapore: 2020. pp. 141–153. [PubMed] [Google Scholar]
  30. Mohapatra S.S., Mukherjee J., Banerjee D., Das P.K., Ghosh P.R., Das K. RFamide Peptides, the Novel Regulators of Mammalian HPG Axis: A Review.  World. 2021;14:1867–1873. doi: 10.14202/vetworld.2021.1867-1873. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  31. Johnson M.A., Tsutsui K., Fraley G.S. Rat RFamide-Related Peptide-3 Stimulates GH Secretion, Inhibits LH Secretion, and Has Variable Effects on Sex Behavior in the Adult Male Rat.  Behav. 2007;51:171–180. doi: 10.1016/j.yhbeh.2006.09.009. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  32. Kirby E.D., Geraghty A.C., Ubuka T., Bentley G.E., Kaufer D. Stress Increases Putative Gonadotropin Inhibitory Hormone and Decreases Luteinizing Hormone in Male Rats.  Natl. Acad. Sci. USA. 2009;106:11324–11329. doi: 10.1073/pnas.0901176106. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  33. Ubuka T., Mizuno T., Fukuda Y., Bentley G.E., Wingfield J.C., Tsutsui K. RNA Interference of Gonadotropin-Inhibitory Hormone Gene Induces Aggressive and Sexual Behaviors in Birds.  Comp. Endocrinol. 2013;181:179–186. doi: 10.1016/j.ygcen.2012.09.010. [PubMed] [CrossRef] [Google Scholar]
  34. Iwasa T., Matsuzaki T., Yano K., Irahara M. Gonadotropin-Inhibitory Hormone Plays Roles in Stress-Induced Reproductive Dysfunction.  Endocrinol. 2017;8:62. doi: 10.3389/fendo.2017.00062. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  35. Suszka-Świtek A., Pałasz A., Filipczyk Ł., Menezes I.C., Mordecka-Chamera K., Angelone T., Bogus K., Bacopoulou F., Worthington J.J., Wiaderkiewicz R. The Gn RH Analogues Affect Novel Neuropeptide SMIM 20/Phoenixin and GPR 173 Receptor Expressions in the Female Rat Hypothalamic–Pituitary–Gonadal ( HPG ) Axis.  Exp. Pharm. Physiol. 2019;46:350–359. doi: 10.1111/1440-1681.13061. [PubMed] [CrossRef] [Google Scholar]
  36. Young W.S., 3rd, Gainer H. Transgenesis and the Study of Expression, Cellular Targeting and Function of Oxytocin, Vasopressin and Their Receptors. 2003;78:185–203. doi: 10.1159/000073702. [PubMed] [CrossRef] [Google Scholar]
  37. Caldwell H.K., Lee H.-J., Macbeth A.H., Young W.S. Vasopressin: Behavioral Roles of an “Original” Neuropeptide.  Neurobiol. 2008;84:1–24. doi: 10.1016/j.pneurobio.2007.10.007. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  38. Zheng H., Lim J.Y., Kim Y., Jung S.T., Hwang S.W. The Role of Oxytocin, Vasopressin, and Their Receptors at Nociceptors in Peripheral Pain Modulation.  Neuroendocrinol. 2021;63:100942. doi: 10.1016/j.yfrne.2021.100942. [PubMed] [CrossRef] [Google Scholar]
  39. Neumann I.D., Landgraf R. Balance of Brain Oxytocin and Vasopressin: Implications for Anxiety, Depression, and Social Behaviors. Trends Neurosci. 2012;35:649–659. doi: 10.1016/j.tins.2012.08.004. [PubMed] [CrossRef] [Google Scholar]
  40. Hodgson R.A., Mullins D., Lu S.X., Guzzi M., Zhang X., Bleickardt C.J., Scott J.D., Miller M.W., Stamford A.W., Parker E.M., et al. Characterization of a Novel Vasopressin V1b Receptor Antagonist, V1B-30N, in Animal Models of Anxiety-like and Depression-like Behavior.  J. Pharmacol. 2014;730:157–163. doi: 10.1016/j.ejphar.2014.02.027. [PubMed] [CrossRef] [Google Scholar]
  41. Rocha A., Godino-Gimeno A., Cerdá-Reverter J.M. Vitamins and Hormones.Volume 111. Elsevier; Amsterdam, The Netherlands: 2019. Evolution of Proopiomelanocortin; pp. 1–16. [PubMed] [Google Scholar]
  42. Fosgerau K., Raun K., Nilsson C., Dahl K., Wulff B.S. Novel α-MSH Analog Causes Weight Loss in Obese Rats and Minipigs and Improves Insulin Sensitivity.  Endocrinol. 2014;220:97–107. doi: 10.1530/JOE-13-0284. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  43. Gargiulo A.T., Curtis G.R., Barson J.R. Pleiotropic Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP): Novel Insights into the Role of PACAP in Eating and Drug Intake. Brain Res. 2020;1729:146626. doi: 10.1016/j.brainres.2019.146626. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  44. Vaudry D., Falluel-Morel A., Bourgault S., Basille M., Burel D., Wurtz O., Fournier A., Chow B.K.C., Hashimoto H., Galas L., et al. Pituitary Adenylate Cyclase-Activating Polypeptide and Its Receptors: 20 Years after the Discovery.  Rev. 2009;61:283–357. doi: 10.1124/pr.109.001370. [PubMed] [CrossRef] [Google Scholar]
  45. Stojakovic A., Ahmad S.M., Malhotra S., Afzal Z., Ahmed M., Lutfy K. The Role of Pituitary Adenylyl Cyclase-Activating Polypeptide in the Motivational Effects of Addictive Drugs.  2020;171:108109. doi: 10.1016/j.neuropharm.2020.108109. [PubMed] [CrossRef] [Google Scholar]
  46. Liao C., de Molliens M.P., Schneebeli S.T., Brewer M., Song G., Chatenet D., Braas K.M., May V., Li J. Targeting the PAC1 Receptor for Neurological and Metabolic Disorders.  Top. Med. Chem. 2019;19:1399–1417. doi: 10.2174/1568026619666190709092647. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  47. Redrobe J.P., Dumont Y., Quirion R. Neuropeptide Y (NPY) and Depression: From Animal Studies to the Human Condition. Life Sci. 2002;71:2921–2937. doi: 10.1016/S0024-3205(02)02159-8. [PubMed] [CrossRef] [Google Scholar]
  48. Widerlöv E., Lindström L.H., Wahlestedt C., Ekman R. Neuropeptide Y and Peptide YY as Possible Cerebrospinal Fluid Markers for Major Depression and Schizophrenia, Respectively.  Psychiatr. Res. 1988;22:69–79. doi: 10.1016/0022-3956(88)90030-1. [PubMed] [CrossRef] [Google Scholar]
  49. Morales-Medina J.C., Dumont Y., Quirion R. A Possible Role of Neuropeptide Y in Depression and Stress. Brain Res. 2010;1314:194–205. doi: 10.1016/j.brainres.2009.09.077. [PubMed] [CrossRef] [Google Scholar]
  50. Holzer P., Reichmann F., Farzi A. Neuropeptide Y, Peptide YY and Pancreatic Polypeptide in the Gut–Brain Axis.  2012;46:261–274. doi: 10.1016/j.npep.2012.08.005. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  51. Cheng Y., Tang X.-Y., Li Y.-X., Zhao D.-D., Cao Q.-H., Wu H.-X., Yang H.-B., Hao K., Yang Y. Depression-Induced Neuropeptide Y Secretion Promotes Prostate Cancer Growth by Recruiting Myeloid Cells. Clin. Cancer Res. 2019;25:2621–2632. doi: 10.1158/1078-0432.CCR-18-2912. [PubMed] [CrossRef] [Google Scholar]
  1. Hassan A.M., Mancano G., Kashofer K., Fröhlich E.E., Matak A., Mayerhofer R., Reichmann F., Olivares M., Neyrinck A.M., Delzenne N.M., et al. High-Fat Diet Induces Depression-like Behaviour in Mice Associated with Changes in Microbiome, Neuropeptide Y, and Brain Metabolome.  Neurosci. 2019;22:877–893. doi: 10.1080/1028415X.2018.1465713. [PubMed] [CrossRef] [Google Scholar]
  2. Domin H. Neuropeptide Y Y2 and Y5 Receptors as Potential Targets for Neuroprotective and Antidepressant Therapies: Evidence from Preclinical Studies.  Neuro-Psychopharmacol. Biol. Psychiatry. 2021;111:110349. doi: 10.1016/j.pnpbp.2021.110349. [PubMed] [CrossRef] [Google Scholar]
  3. Carboni L., El Khoury A., Beiderbeck D.I., Neumann I.D., Mathé A.A. Neuropeptide Y, Calcitonin Gene-Related Peptide, and Neurokinin A in Brain Regions of HAB Rats Correlate with Anxiety-like Behaviours.  Neuropsychopharmacol. 2022;57:1–14. doi: 10.1016/j.euroneuro.2021.12.011. [PubMed] [CrossRef] [Google Scholar]
  4. Sharma A., Ren X., Zhang H., Pandey G.N. Effect of Depression and Suicidal Behavior on Neuropeptide Y (NPY) and Its Receptors in the Adult Human Brain: A Postmortem Study.  Neuro-Psychopharmacol. Biol. Psychiatry. 2022;112:110428. doi: 10.1016/j.pnpbp.2021.110428. [PMC free article][PubMed] [CrossRef] [Google Scholar]
  5. Wegener G., Finger B.C., Elfving B., Keller K., Liebenberg N., Fischer C.W., Singewald N., Slattery D.A., Neumann I.D., Mathé A.A. Neuropeptide S Alters Anxiety, but Not Depression-like Behaviour in Flinders Sensitive Line Rats: A Genetic Animal Model of Depression.  J. Neuropsychopharm. 2012;15:375–387. doi: 10.1017/S1461145711000678. [PubMed] [CrossRef] [Google Scholar]
  6. Okamura N., Hashimoto K., Iyo M., Shimizu E., Dempfle A., Friedel S., Reinscheid R.K. Gender-Specific Association of a Functional Coding Polymorphism in the Neuropeptide S Receptor Gene with Panic Disorder but Not with Schizophrenia or Attention-Deficit/Hyperactivity Disorder.  Neuro-Psychopharmacol. Biol. Psychiatry. 2007;31:1444–1448. doi: 10.1016/j.pnpbp.2007.06.026. [PubMed] [CrossRef] [Google Scholar]
  7. Raiteri L., Luccini E., Romei C., Salvadori S., Calò G. Neuropeptide S Selectively Inhibits the Release of 5-HT and Noradrenaline from Mouse Frontal Cortex Nerve Endings: Neuropeptide S and Neurotransmitter Release.  J. Pharmacol. 2009;157:474–481. doi: 10.1111/j.1476-5381.2009.00163.x. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  8. Gupta P.R., Prabhavalkar K. Combination Therapy with Neuropeptides for the Treatment of Anxiety Disorder. 2021;86:102127. doi: 10.1016/j.npep.2021.102127. [PubMed] [CrossRef] [Google Scholar]
  9. Tillmann S., Skibdal H.E., Christiansen S.H., Gøtzsche C.R., Hassan M., Mathé A.A., Wegener G., Woldbye D.P.D. Sustained Overexpression of Neuropeptide S in the Amygdala Reduces Anxiety-like Behavior in Rats.  Brain Res. 2019;367:28–34. doi: 10.1016/j.bbr.2019.03.039. [PubMed] [CrossRef] [Google Scholar]
  10. Gouardères C., Sutak M., Zajac J.-M., Jhamandas K. Antinociceptive Effects of Intrathecally Administered F8Famide and FMRFamide in the Rat.  J. Pharmacol. 1993;237:73–81. doi: 10.1016/0014-2999(93)90095-Y. [PubMed] [CrossRef] [Google Scholar]
  11. Fehmann H.C., McGregor G., Weber V., Eissele R., Göke R., Göke B., Arnold R. The Effects of Two FMRFamide Related Peptides (A-18-F-Amide and F-8-F-Amide; ‘Morphine Modulating Peptides’) on the Endocrine and Exocrine Rat Pancreas. Neuropeptides. 1990;17:87–92. doi: 10.1016/0143-4179(90)90054-3. [PubMed] [CrossRef] [Google Scholar]
  12. Nguyen T., Marusich J., Li J.-X., Zhang Y. Neuropeptide FF and Its Receptors: Therapeutic Applications and Ligand Development. J. Med. Chem. 2020;63:12387–12402. doi: 10.1021/acs.jmedchem.0c00643. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  13. Kim J.S. What’s in a Name? Roles of RFamide-Related Peptides Beyond Gonadotrophin Inhibition. J Neuroendocr. 2016;28 doi: 10.1111/jne.12407. [PubMed] [CrossRef] [Google Scholar]
  14. Lin Y.-T., Yu Y.-L., Hong W.-C., Yeh T.-S., Chen T.-C., Chen J.-C. NPFFR2 Activates the HPA axis and Induces Anxiogenic Effects in Rodents. Int. J. Mol. Sci. 2017;18:1810. doi: 10.3390/ijms18081810. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  15. Bondy B., Baghai T.C., Minov C., Schüle C., Schwarz M.J., Zwanzger P., Rupprecht R., Möller H.-J. ürgen Substance P Serum Levels Are Increased in Major Depression: Preliminary Results. Biol. Psychiatry. 2003;53:538–542. doi: 10.1016/S0006-3223(02)01544-5. [PubMed] [CrossRef] [Google Scholar]
  16. Iftikhar K., Siddiq A., Baig S.G., Zehra S. Substance P: A Neuropeptide Involved in the Psychopathology of Anxiety Disorders. Neuropeptides. 2020;79:101993. doi: 10.1016/j.npep.2019.101993. [PubMed] [CrossRef] [Google Scholar]
  17. Schwarz M.J., Ackenheil M. The Role of Substance P in Depression: Therapeutic Implications. Dialogues Clin. Neurosci. 2002;4:21–29. doi: 10.31887/DCNS.2002.4.1/mschwarz. [PMC free article] [PubMed] [CrossRef] [Google Scholar]
  18. Borbély É., Hajna Z., Nabi L., Scheich B., Tékus V., László K., Ollmann T., Kormos V., Gaszner B., Karádi Z., et al. Hemokinin-1 Mediates Anxiolytic and Anti-Depressant-like Actions in Mice. Brain Behav. Immun. 2017;59:219–232. doi: 10.1016/j.bbi.2016.09.004. [PubMed] [CrossRef] [Google Scholar]
  19. Kramer M.S., Winokur A., Kelsey J., Preskorn S.H., Rothschild A.J., Snavely D., Ghosh K., Ball W.A., Reines S.A., Munjack D., et al. Demonstration of the Efficacy and Safety of a Novel Substance P (NK1) Receptor Antagonist in MajorDepression. 2004;29:385–392. doi: 10.1038/sj.npp.1300260. [PubMed] [CrossRef] [Google Scholar]

Ahead of Print Subscription Original Research
Volume
Received April 30, 2024
Accepted August 24, 2024
Published August 31, 2024

Check Our other Platform for Workshops in the field of AI, Biotechnology & Nanotechnology.
Check Out Platform for Webinars in the field of AI, Biotech. & Nanotech.