Application Of Drug Delivery Using Nano-Technology To Cure Mental Disorders (Schizophrenia)

Year : 2024 | Volume : | : | Page : –
By

Uday Kapur

Sankalp Tikku

Chakresh Kumar Jain

  1. Student Department of Biotechnology, Jaypee Institute of Information Technology, Noida Uttar Pradesh India
  2. Student Department of Biotechnology, Jaypee Institute of Information Technology, Noida Uttar Pradesh India
  3. Associate Professor Department of Biotechnology, Jaypee Institute of Information Technology, Noida Uttar Pradesh India

Abstract

Nanotechnology involves the manipulation of the count at an atomic scale to create novel systems, mate­rials, and devices. This groundbreaking era holds substantial potential for scientific development across various domain names, which includes manufacturing, patron items, electricity, substances, and remedies. In current times, the sphere of prescribed drugs has witnessed a brilliant­ surge in the usage of nanotechnology for the improvement of revolutionary­ medications. Schizophrenia, a ne­uropsychiatric disorder affecting the ce­ntral worried gadget, outcomes in de­lusions, social disengagement, in addition to visual and auditory hallucinations. The situation usually arises from imbalances in key neurotransmitters like dopamine­ and serotonin. Genetic factors, lifestyle changes, and environmental influences also play a role in the improvement of schizophre­nia. To manipulate the signs and symptoms, abnormal antipsychotic medications which include NDMA inhibitors and dopamine­ receptor D1-D2 antagonists are normally pre­scribed. Olanzapine, haloperidol, and clozapine­ are the various maximum widely used antipsychotics, being critical in counteracting the e­ffects of different neurotransmitte­rs and addressing symptomatology. However, the complex and multifacete­d nature of schizophrenia makes it a tough infection to diagnose and manipulate. Nanote­chnology in medicine ambitions to utilize tiny carrie­rs to enhance the e­ffectiveness of low-we­ight molecular therapeutics. Our findings suggest that some nanoparticles such as liposomes, PLA, etc. may play a consequential role in the diagnosis and treatment of Schizophrenia with a resourceful and impactful research further in this vast domain.

Keywords: Nanotechnology, Drug Delivery, Mental Disorders, Schizophrenia, Dopamine, Serotonin

How to cite this article: Uday Kapur, Sankalp Tikku, Chakresh Kumar Jain. Application Of Drug Delivery Using Nano-Technology To Cure Mental Disorders (Schizophrenia). Research & Reviews : A Journal of Life Sciences. 2024; ():-.
How to cite this URL: Uday Kapur, Sankalp Tikku, Chakresh Kumar Jain. Application Of Drug Delivery Using Nano-Technology To Cure Mental Disorders (Schizophrenia). Research & Reviews : A Journal of Life Sciences. 2024; ():-. Available from: https://journals.stmjournals.com/rrjols/article=2024/view=144810


References

  1. Rajendran, K. N. Menon, and S. C. Nair, “Nanotechnology Approaches for Enhanced CNS Drug Delivery in the Management of Schizophrenia,” Advanced Pharmaceutical Bulletin, vol. 12, no. 3, pp. 490–508, Oct. 2021, doi: 10.34172/apb.2022.052. [Online]. Available: http://dx.doi.org/10.34172/apb.2022.052
  2. “Clinical Handbook of Schizophrenia,” Google Books. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=KFMFzuL3husC&oi=fnd&pg=PR1&ots=-DJf5wUBJY&sig=4meeLeEqY0KtTtFs7kAyopbQWDQ
  3. “Schizophrenia,” Jan. 10, 2022. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/schizophrenia#:~:text=Schizophrenia%20affects%20approximately%2024%20million,as%20many%20other%20mental%20disorders
  4. T. Carpenter and J. I. Koenig, “The Evolution of Drug Development in Schizophrenia: Past Issues and Future Opportunities,” Neuropsychopharmacology, vol. 33, no. 9, pp. 2061–2079, Nov. 2007, doi: 10.1038/sj.npp.1301639. [Online]. Available: http://dx.doi.org/10.1038/sj.npp.1301639
  5. Avramopoulos, “Recent Advances in the Genetics of Schizophrenia,” Complex Psychiatry, vol. 4, no. 1, pp. 35–51, 2018, doi: 10.1159/000488679. [Online]. Available: http://dx.doi.org/10.1159/000488679
  6. E. Sommer, J. Tiihonen, A. van Mourik, A. Tanskanen, and H. Taipale, “The clinical course of schizophrenia in women and men—a nation-wide cohort study,” npj Schizophrenia, vol. 6, no. 1, May 2020, doi: 10.1038/s41537-020-0102-z. [Online]. Available: http://dx.doi.org/10.1038/s41537-020-0102-z
  7. Scherr et al., “Environmental risk factors and their impact on the age of onset of schizophrenia: Comparing familial to non-familial schizophrenia,” Nordic Journal of Psychiatry, vol. 66, no. 2, pp. 107–114, Aug. 2011, doi: 10.3109/08039488.2011.605171. [Online]. Available: http://dx.doi.org/10.3109/08039488.2011.605171
  8. Cannon, P. B. Jones, and R. M. Murray, “Obstetric Complications and Schizophrenia: Historical and Meta-Analytic Review,” American Journal of Psychiatry, vol. 159, no. 7, pp. 1080–1092, Jul. 2002, doi: 10.1176/appi.ajp.159.7.1080. [Online]. Available: http://dx.doi.org/10.1176/appi.ajp.159.7.1080
  9. Landreau et al., “Effects of Two Commonly Found Strains of Influenza A Virus on Developing Dopaminergic Neurons, in Relation to the Pathophysiology of Schizophrenia,” PLoS ONE, vol. 7, no. 12, p. e51068, Dec. 2012, doi: 10.1371/journal.pone.0051068. [Online]. Available: http://dx.doi.org/10.1371/journal.pone.0051068
  10. J. K. Balfour and M. R. Munafò, The Neuropharmacology of Nicotine Dependence. Springer, 2015 [Online]. Available: http://books.google.ie/books?id=j251BgAAQBAJ&printsec=frontcover&dq=The+Neuropharmacology+of+Nicotine+Dependence&hl=&cd=1&source=gbs_api
  11. Seeman, “Atypical Antipsychotics: Mechanism of Action,” The Canadian Journal of Psychiatry, vol. 47, no. 1, pp. 27–38, Feb. 2002, doi: 10.1177/070674370204700106. [Online]. Available: http://dx.doi.org/10.1177/070674370204700106
  12. Kapur and D. Mamo, “Half a century of antipsychotics and still a central role for dopamine D2 receptors,” Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 7, pp. 1081–1090, Oct. 2003, doi: 10.1016/j.pnpbp.2003.09.004. [Online]. Available: http://dx.doi.org/10.1016/j.pnpbp.2003.09.004
  13. Wahlbeck, M. Cheine, A. Essali, and C. Adams, “Evidence of Clozapine’s Effectiveness in Schizophrenia: A Systematic Review and Meta-Analysis of Randomized Trials,” American Journal of Psychiatry, vol. 156, no. 7, pp. 990–999, Jul. 1999, doi: 10.1176/ajp.156.7.990. [Online]. Available: http://dx.doi.org/10.1176/ajp.156.7.990
  14. Conley and D. Kelly, “Current Status of Antipsychotic Treatment,” Current Drug Target -CNS & Neurological Disorders, vol. 1, no. 2, pp. 123–128, Apr. 2002, doi: 10.2174/1568007024606221. [Online]. Available: http://dx.doi.org/10.2174/1568007024606221
  15. S. Strauss, W. T. Carpenter, and J. J. Bartko, “Part III. Speculations on the Processes That Underlie Schizophrenic Symptoms and Signs,” Schizophrenia Bulletin, vol. 1, no. 11, pp. 61–69, Dec. 1974, doi: 10.1093/schbul/1.11.61. [Online]. Available: http://dx.doi.org/10.1093/schbul/1.11.61
  16. “Signs and symptoms as predictors of outcome: a report from the International Pilot Study of Schizophrenia,” American Journal of Psychiatry, vol. 135, no. 8, pp. 940–944, Aug. 1978, doi: 10.1176/ajp.135.8.940. [Online]. Available: http://dx.doi.org/10.1176/ajp.135.8.940
  17. S. Strauss, “Prediction of Outcome in Schizophrenia,” Archives of General Psychiatry, vol. 34, no. 2, p. 159, Feb. 1977, doi: 10.1001/archpsyc.1977.01770140049005. [Online]. Available: http://dx.doi.org/10.1001/archpsyc.1977.01770140049005
  18. Kirkpatrick, W. S. Fenton, W. T. Carpenter, and S. R. Marder, “The NIMH-MATRICS Consensus Statement on Negative Symptoms,” Schizophrenia Bulletin, vol. 32, no. 2, pp. 214–219, Feb. 2006, doi: 10.1093/schbul/sbj053. [Online]. Available: http://dx.doi.org/10.1093/schbul/sbj053
  19. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surgical Neurology, vol. 61, no. 3, pp. 216–220, Mar. 2004, doi: 10.1016/j.surneu.2003.09.036. [Online]. Available: http://dx.doi.org/10.1016/j.surneu.2003.09.036
  20. A. Silva, “Introduction to nanotechnology and its applications to medicine,” Surgical Neurology, vol. 61, no. 3, pp. 216–220, Mar. 2004, doi: 10.1016/j.surneu.2003.09.036. [Online]. Available: http://dx.doi.org/10.1016/j.surneu.2003.09.036
  21. Brisch et al., “The Role of Dopamine in Schizophrenia from a Neurobiological and Evolutionary Perspective: Old Fashioned, but Still in Vogue,” Frontiers in Psychiatry, vol. 5, May 2014, doi: 10.3389/fpsyt.2014.00047. [Online]. Available: http://dx.doi.org/10.3389/fpsyt.2014.00047
  22. Kätzel, A. R. Wolff, A. M. Bygrave, and D. M. Bannerman, “Hippocampal Hyperactivity as a Druggable Circuit-Level Origin of Aberrant Salience in Schizophrenia,” Frontiers in Pharmacology, vol. 11, Oct. 2020, doi: 10.3389/fphar.2020.486811. [Online]. Available: http://dx.doi.org/10.3389/fphar.2020.486811
  23. “Dopamine in schizophrenia: a review and reconceptualization,” American Journal of Psychiatry, vol. 148, no. 11, pp. 1474–1486, Nov. 1991, doi: 10.1176/ajp.148.11.1474. [Online]. Available: http://dx.doi.org/10.1176/ajp.148.11.1474
  24. A. McCutcheon, J. H. Krystal, and O. D. Howes, “Dopamine and glutamate in schizophrenia: biology, symptoms and treatment,” World Psychiatry, vol. 19, no. 1, pp. 15–33, Jan. 2020, doi: 10.1002/wps.20693. [Online]. Available: http://dx.doi.org/10.1002/wps.20693
  25. Howes, R. McCutcheon, and J. Stone, “Glutamate and dopamine in schizophrenia: An update for the 21st century,” Journal of Psychopharmacology, vol. 29, no. 2, pp. 97–115, Jan. 2015, doi: 10.1177/0269881114563634. [Online]. Available: http://dx.doi.org/10.1177/0269881114563634
  26. T. Balu, “The NMDA Receptor and Schizophrenia,” Neuropsychopharmacology: A Tribute to Joseph T. Coyle, pp. 351–382, 2016, doi: 10.1016/bs.apha.2016.01.006. [Online]. Available: http://dx.doi.org/10.1016/bs.apha.2016.01.006
  27. Umbricht et al., “Effect of Bitopertin, a Glycine Reuptake Inhibitor, on Negative Symptoms of Schizophrenia,” JAMA Psychiatry, vol. 71, no. 6, p. 637, Jun. 2014, doi: 10.1001/jamapsychiatry.2014.163. [Online]. Available: http://dx.doi.org/10.1001/jamapsychiatry.2014.163
  28. L. Halberstadt, “Recent advances in the neuropsychopharmacology of serotonergic hallucinogens,” Behavioural Brain Research, vol. 277, pp. 99–120, Jan. 2015, doi: 10.1016/j.bbr.2014.07.016. [Online]. Available: http://dx.doi.org/10.1016/j.bbr.2014.07.016
  29. Kishi, T. Mukai, Y. Matsuda, and N. Iwata, “Selective Serotonin 3 Receptor Antagonist Treatment for Schizophrenia: Meta-analysis and Systematic Review,” NeuroMolecular Medicine, vol. 16, no. 1, pp. 61–69, Jul. 2013, doi: 10.1007/s12017-013-8251-0. [Online]. Available: http://dx.doi.org/10.1007/s12017-013-8251-0
  30. A. Ellenbroek and E. P. M. Prinssen, “Can 5-HT3 antagonists contribute toward the treatment of schizophrenia?,” Behavioural Pharmacology, vol. 26, no. 1 and 2-Special Issue, pp. 33–44, Feb. 2015, doi: 10.1097/fbp.0000000000000102. [Online]. Available: http://dx.doi.org/10.1097/fbp.0000000000000102
  31. Loebel and L. Citrome, “Lurasidone: a novel antipsychotic agent for the treatment of schizophrenia and bipolar depression,” BJPsych Bulletin, vol. 39, no. 5, pp. 237–241, Oct. 2015, doi: 10.1192/pb.bp.114.048793. [Online]. Available: http://dx.doi.org/10.1192/pb.bp.114.048793
  32. Dalack, “Nicotine Withdrawal and Psychiatric Symptoms in Cigarette Smokers with Schizophrenia,” Neuropsychopharmacology, vol. 21, no. 2, pp. 195–202, Aug. 1999, doi: 10.1016/s0893-133x(98)00121-3. [Online]. Available: http://dx.doi.org/10.1016/s0893-133x(98)00121-3
  33. M. Lucatch, D. J. E. Lowe, R. C. Clark, K. Kozak, and T. P. George, “Neurobiological Determinants of Tobacco Smoking in Schizophrenia,” Frontiers in Psychiatry, vol. 9, Dec. 2018, doi: 10.3389/fpsyt.2018.00672. [Online]. Available: http://dx.doi.org/10.3389/fpsyt.2018.00672
  34. C. Javitt and R. Freedman, “Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia,” American Journal of Psychiatry, vol. 172, no. 1, pp. 17–31, Jan. 2015, doi: 10.1176/appi.ajp.2014.13121691. [Online]. Available: http://dx.doi.org/10.1176/appi.ajp.2014.13121691
  35. Parikh, M. G. Kutlu, and T. J. Gould, “nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives,” Schizophrenia Research, vol. 171, no. 1–3, pp. 1–15, Mar. 2016, doi: 10.1016/j.schres.2016.01.020. [Online]. Available: http://dx.doi.org/10.1016/j.schres.2016.01.020
  36. Beinat, S. D. Banister, M. Herrera, V. Law, and M. Kassiou, “The Therapeutic Potential of α7 Nicotinic Acetylcholine Receptor (α7 nAChR) Agonists for the Treatment of the Cognitive Deficits Associated with Schizophrenia,” CNS Drugs, vol. 29, no. 7, pp. 529–542, Jul. 2015, doi: 10.1007/s40263-015-0260-0. [Online]. Available: http://dx.doi.org/10.1007/s40263-015-0260-0
  37. G. Coulthard and T. M. Woodruff, “Commentary: Beyond C4: Analysis of the complement gene pathway shows enrichment for IQ in patients with psychotic disorders and healthy controls,” Frontiers in Immunology, vol. 10, Dec. 2019, doi: 10.3389/fimmu.2019.02853. [Online]. Available: http://dx.doi.org/10.3389/fimmu.2019.02853
  38. M. Sellgren et al., “Increased synapse elimination by microglia in schizophrenia patient-derived models of synaptic pruning,” Nature Neuroscience, vol. 22, no. 3, pp. 374–385, Feb. 2019, doi: 10.1038/s41593-018-0334-7. [Online]. Available: http://dx.doi.org/10.1038/s41593-018-0334-7
  39. S. E. Carney, “Does Prenatal Exposure to Maternal Inflammation Causes Sex Differences in Schizophrenia-Related Behavioral Outcomes in Adult Rats?,” eneuro, vol. 6, no. 6, p. ENEURO.0393-19.2019, Nov. 2019, doi: 10.1523/eneuro.0393-19.2019. [Online]. Available: http://dx.doi.org/10.1523/eneuro.0393-19.2019
  40. “Health Benefits and Adverse Effects of a Gluten-Free Diet in Non-Celiac Disease Patients,” PubMed, Feb. 01, 2018. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/29606920/
  41. Müller et al., “Beneficial Antipsychotic Effects of Celecoxib Add-On Therapy Compared to Risperidone Alone in Schizophrenia,” American Journal of Psychiatry, vol. 159, no. 6, pp. 1029–1034, Jun. 2002, doi: 10.1176/appi.ajp.159.6.1029. [Online]. Available: http://dx.doi.org/10.1176/appi.ajp.159.6.1029
  42. L. Comer, M. Carrier, M.-È. Tremblay, and A. Cruz-Martín, “The Inflamed Brain in Schizophrenia: The Convergence of Genetic and Environmental Risk Factors That Lead to Uncontrolled Neuroinflammation,” Frontiers in Cellular Neuroscience, vol. 14, Aug. 2020, doi: 10.3389/fncel.2020.00274. [Online]. Available: http://dx.doi.org/10.3389/fncel.2020.00274
  43. Hong and M. Bang, “Anti-inflammatory Strategies for Schizophrenia: A Review of Evidence for Therapeutic Applications and Drug Repurposing,” Clinical Psychopharmacology and Neuroscience, vol. 18, no. 1, pp. 10–24, Feb. 2020, doi: 10.9758/cpn.2020.18.1.10. [Online]. Available: http://dx.doi.org/10.9758/cpn.2020.18.1.10
  44. Yang, T. Xiao, Q. Sun, and K. Wang, “The current agonists and positive allosteric modulators of α 7 nAChR for CNS indications in clinical trials,” Acta Pharmaceutica Sinica B, vol. 7, no. 6, pp. 611–622, Nov. 2017, doi: 10.1016/j.apsb.2017.09.001. [Online]. Available: http://dx.doi.org/10.1016/j.apsb.2017.09.001
  45. C. de Jonge, C. H. Vinkers, H. E. Hulshoff Pol, and A. Marsman, “GABAergic Mechanisms in Schizophrenia: Linking Postmortem and In Vivo Studies,” Frontiers in Psychiatry, vol. 8, Aug. 2017, doi: 10.3389/fpsyt.2017.00118. [Online]. Available: http://dx.doi.org/10.3389/fpsyt.2017.00118
  46. E. Schoonover, S. J. Dienel, and D. A. Lewis, “Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development,” Biomarkers in Neuropsychiatry, vol. 3, p. 100015, Dec. 2020, doi: 10.1016/j.bionps.2020.100015. [Online]. Available: http://dx.doi.org/10.1016/j.bionps.2020.100015
  47. C. Jacob, “Neurobiology and Therapeutic Potential of α5-GABA Type A Receptors,” Frontiers in Molecular Neuroscience, vol. 12, Jul. 2019, doi: 10.3389/fnmol.2019.00179. [Online]. Available: http://dx.doi.org/10.3389/fnmol.2019.00179
  48. S. M. Evenseth, M. Gabrielsen, and I. Sylte, “The GABAB Receptor—Structure, Ligand Binding and Drug Development,” Molecules, vol. 25, no. 13, p. 3093, Jul. 2020, doi: 10.3390/molecules25133093. [Online]. Available: http://dx.doi.org/10.3390/molecules25133093
  49. K. Johnsen et al., “Alterations in Task-Related Brain Activation in Children, Adolescents and Young Adults at Familial High-Risk for Schizophrenia or Bipolar Disorder – A Systematic Review,” Frontiers in Psychiatry, vol. 11, Jul. 2020, doi: 10.3389/fpsyt.2020.00632. [Online]. Available: http://dx.doi.org/10.3389/fpsyt.2020.00632
  50. Wu, P. Mickey Williams, and W. H. Koch, “Clinical applications of microarray-based diagnostic tests,” BioTechniques, vol. 39, no. 4S, pp. S557–S582, Oct. 2005, doi: 10.2144/000112046. [Online]. Available: http://dx.doi.org/10.2144/000112046
  51. T. Ward, K. M. Kostick, and G. Lázaro-Muñoz, “Integrating Genomics into Psychiatric Practice: Ethical and Legal Challenges for Clinicians,” Harvard Review of Psychiatry, vol. 27, no. 1, pp. 53–64, Jan. 2019, doi: 10.1097/hrp.0000000000000203. [Online]. Available: http://dx.doi.org/10.1097/hrp.0000000000000203
  52. Z. Moosavi and A. M. Ardekani, “Role of Epigenetics in Biology and Human Diseases.,” PubMed, Nov. 01, 2016. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/27377127/
  53. -K. Huang, S. Kafert-Kasting, and T. Thum, “Preclinical and Clinical Development of Noncoding RNA Therapeutics for Cardiovascular Disease,” Circulation Research, vol. 126, no. 5, pp. 663–678, Feb. 2020, doi: 10.1161/circresaha.119.315856. [Online]. Available: http://dx.doi.org/10.1161/circresaha.119.315856
  54. Domenici et al., “Plasma Protein Biomarkers for Depression and Schizophrenia by Multi Analyte Profiling of Case-Control Collections,” PLoS ONE, vol. 5, no. 2, p. e9166, Feb. 2010, doi: 10.1371/journal.pone.0009166. [Online]. Available: http://dx.doi.org/10.1371/journal.pone.0009166
  55. Domenici et al., “Plasma Protein Biomarkers for Depression and Schizophrenia by Multi Analyte Profiling of Case-Control Collections,” PLoS ONE, vol. 5, no. 2, p. e9166, Feb. 2010, doi: 10.1371/journal.pone.0009166. [Online]. Available: http://dx.doi.org/10.1371/journal.pone.0009166
  56. Boerrigter et al., “Using blood cytokine measures to define high inflammatory biotype of schizophrenia and schizoaffective disorder,” Journal of Neuroinflammation, vol. 14, no. 1, Sep. 2017, doi: 10.1186/s12974-017-0962-y. [Online]. Available: http://dx.doi.org/10.1186/s12974-017-0962-y
  57. F. Deeken and W. Löscher, “The Blood-Brain Barrier and Cancer: Transporters, Treatment, and Trojan Horses,” Clinical Cancer Research, vol. 13, no. 6, pp. 1663–1674, Mar. 2007, doi: 10.1158/1078-0432.ccr-06-2854. [Online]. Available: http://dx.doi.org/10.1158/1078-0432.ccr-06-2854
  58. van Tellingen, B. Yetkin-Arik, M. C. de Gooijer, P. Wesseling, T. Wurdinger, and H. E. de Vries, “Overcoming the blood–brain tumor barrier for effective glioblastoma treatment,” Drug Resistance Updates, vol. 19, pp. 1–12, Mar. 2015, doi: 10.1016/j.drup.2015.02.002. [Online]. Available: http://dx.doi.org/10.1016/j.drup.2015.02.002
  59. J. Abbott, A. A. K. Patabendige, D. E. M. Dolman, S. R. Yusof, and D. J. Begley, “Structure and function of the blood–brain barrier,” Neurobiology of Disease, vol. 37, no. 1, pp. 13–25, Jan. 2010, doi: 10.1016/j.nbd.2009.07.030. [Online]. Available: http://dx.doi.org/10.1016/j.nbd.2009.07.030
  60. “The Blood-Brain Barrier Challenge for the Treatment of Brain Cancer, Secondary Brain Metastases, and Neurological Diseases,” PubMed, Aug. 01, 2015. [Online]. Available: https://pubmed.ncbi.nlm.nih.gov/26136217/
  61. M. Pardridge, “Drug and gene targeting to the brain with molecular trojan horses,” Nature Reviews Drug Discovery, vol. 1, no. 2, pp. 131–139, Feb. 2002, doi: 10.1038/nrd725. [Online]. Available: http://dx.doi.org/10.1038/nrd725
  62. Agarwal, R. Sane, R. Oberoi, J. R. Ohlfest, and W. F. Elmquist, “Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain,” Expert Reviews in Molecular Medicine, vol. 13, May 2011, doi: 10.1017/s1462399411001888. [Online]. Available: http://dx.doi.org/10.1017/s1462399411001888
  63. S. Hersh et al., “Evolving Drug Delivery Strategies to Overcome the Blood Brain Barrier,” Current Pharmaceutical Design, vol. 22, no. 9, pp. 1177–1193, Mar. 2016, doi: 10.2174/1381612822666151221150733. [Online]. Available: http://dx.doi.org/10.2174/1381612822666151221150733
  64. Alkhani and H. Al-Shaar, “Intrathecal baclofen therapy for spasticity: A compliance-based study to indicate effectiveness,” Surgical Neurology International, vol. 7, no. 20, p. 539, 2016, doi: 10.4103/2152-7806.187529. [Online]. Available: http://dx.doi.org/10.4103/2152-7806.187529
  65. J. Lochhead and R. G. Thorne, “Intranasal delivery of biologics to the central nervous system,” Advanced Drug Delivery Reviews, vol. 64, no. 7, pp. 614–628, May 2012, doi: 10.1016/j.addr.2011.11.002. [Online]. Available: http://dx.doi.org/10.1016/j.addr.2011.11.002
  66. Li et al., “Nano carriers for drug transport across the blood–brain barrier,” Journal of Drug Targeting, vol. 25, no. 1, pp. 17–28, May 2016, doi: 10.1080/1061186x.2016.1184272. [Online]. Available: http://dx.doi.org/10.1080/1061186x.2016.1184272
  67. Scuderi, C. Stecca, A. Iacomino, and L. Steardo, “Role of astrocytes in major neurological disorders: The evidence and implications,” IUBMB Life, vol. 65, no. 12, pp. 957–961, Nov. 2013, doi: 10.1002/iub.1223. [Online]. Available: http://dx.doi.org/10.1002/iub.1223
  68. Hutter et al., “Microglial Response to Gold Nanoparticles,” ACS Nano, vol. 4, no. 5, pp. 2595–2606, Mar. 2010, doi: 10.1021/nn901869f. [Online]. Available: http://dx.doi.org/10.1021/nn901869f
  69. Teleanu, C. Chircov, A. Grumezescu, A. Volceanov, and R. Teleanu, “Blood-Brain Delivery Methods Using Nanotechnology,” Pharmaceutics, vol. 10, no. 4, p. 269, Dec. 2018, doi: 10.3390/pharmaceutics10040269. [Online]. Available: http://dx.doi.org/10.3390/pharmaceutics10040269
  70. E. Igartúa, C. S. Martinez, C. F. Temprana, S. del V. Alonso, and M. J. Prieto, “PAMAM dendrimers as a carbamazepine delivery system for neurodegenerative diseases: A biophysical and nanotoxicological characterization,” International Journal of Pharmaceutics, vol. 544, no. 1, pp. 191–202, Jun. 2018, doi: 10.1016/j.ijpharm.2018.04.032. [Online]. Available: http://dx.doi.org/10.1016/j.ijpharm.2018.04.032
  71. (Chezy) Barenholz, “Doxil® — The first FDA-approved nano-drug: Lessons learned,” Journal of Controlled Release, vol. 160, no. 2, pp. 117–134, Jun. 2012, doi: 10.1016/j.jconrel.2012.03.020. [Online]. Available: http://dx.doi.org/10.1016/j.jconrel.2012.03.020
  72. Yu, R. J. Lee, and L. J. Lee, “Microfluidic Methods for Production of Liposomes,” Methods in Enzymology, pp. 129–141, 2009, doi: 10.1016/s0076-6879(09)65007-2. [Online]. Available: http://dx.doi.org/10.1016/s0076-6879(09)65007-2
  73. P. Deshpande, S. Biswas, and V. P. Torchilin, “Current trends in the use of liposomes for tumor targeting,” Nanomedicine, vol. 8, no. 9, pp. 1509–1528, Sep. 2013, doi: 10.2217/nnm.13.118. [Online]. Available: http://dx.doi.org/10.2217/nnm.13.118
  74. D. Stenehjem, A. M. Hartz, B. Bauer, and G. W. Anderson, “Novel and emerging strategies in drug delivery for overcoming the blood–brain barrier,” Future Medicinal Chemistry, vol. 1, no. 9, pp. 1623–1641, Dec. 2009, doi: 10.4155/fmc.09.137. [Online]. Available: http://dx.doi.org/10.4155/fmc.09.137
  75. D. Stenehjem, A. M. Hartz, B. Bauer, and G. W. Anderson, “Novel and emerging strategies in drug delivery for overcoming the blood–brain barrier,” Future Medicinal Chemistry, vol. 1, no. 9, pp. 1623–1641, Dec. 2009, doi: 10.4155/fmc.09.137. [Online]. Available: http://dx.doi.org/10.4155/fmc.09.137
  76. Hattori, S. Suzuki, S. Kawakami, F. Yamashita, and M. Hashida, “The role of dioleoylphosphatidylethanolamine (DOPE) in targeted gene delivery with mannosylated cationic liposomes via intravenous route,” Journal of Controlled Release, vol. 108, no. 2–3, pp. 484–495, Nov. 2005, doi: 10.1016/j.jconrel.2005.08.012. [Online]. Available: http://dx.doi.org/10.1016/j.jconrel.2005.08.012
  77. Tapeinos, M. Battaglini, and G. Ciofani, “Advances in the design of solid lipid nanoparticles and nanostructured lipid carriers for targeting brain diseases,” Journal of Controlled Release, vol. 264, pp. 306–332, Oct. 2017, doi: 10.1016/j.jconrel.2017.08.033. [Online]. Available: http://dx.doi.org/10.1016/j.jconrel.2017.08.033
  78. S. Karakoti, S. Das, S. Thevuthasan, and S. Seal, “PEGylated Inorganic Nanoparticles,” Angewandte Chemie International Edition, vol. 50, no. 9, pp. 1980–1994, Jan. 2011, doi: 10.1002/anie.201002969. [Online]. Available: http://dx.doi.org/10.1002/anie.201002969
  79. J. Joralemon, S. McRae, and T. Emrick, “PEGylated polymers for medicine: from conjugation to self-assembled systems,” Chemical Communications, vol. 46, no. 9, p. 1377, 2010, doi: 10.1039/b920570p. [Online]. Available: http://dx.doi.org/10.1039/b920570p
  80. T. Clark and K. L. Wisner, “Treatment of Peripartum Bipolar Disorder,” Obstetrics and Gynecology Clinics of North America, vol. 45, no. 3, pp. 403–417, Sep. 2018, doi: 10.1016/j.ogc.2018.05.002. [Online]. Available: http://dx.doi.org/10.1016/j.ogc.2018.05.002
  81. R. Swerdlow, Behavioral Neurobiology of Schizophrenia and Its Treatment. Springer Science & Business Media, 2010 [Online]. Available: http://books.google.ie/books?id=udlELa8_6aoC&printsec=frontcover&dq=Behavioral+Neurobiology+of+Schizophrenia+and+Its+Treatment&hl=&cd=1&source=gbs_api
  82. -H. Cheng, L. Illum, and S. Davis, “Schizophrenia and Drug Delivery Systems,” Journal of Drug Targeting, vol. 8, no. 2, pp. 107–117, Jan. 2000, doi: 10.3109/10611860008996856. [Online]. Available: http://dx.doi.org/10.3109/10611860008996856
  83. Joseph, S. Reddi, V. Rinwa, G. Balwani, and R. Saha, “Design and in vivo evaluation of solid lipid nanoparticulate systems of Olanzapine for acute phase schizophrenia treatment: Investigations on antipsychotic potential and adverse effects,” European Journal of Pharmaceutical Sciences, vol. 104, pp. 315–325, Jun. 2017, doi: 10.1016/j.ejps.2017.03.050. [Online]. Available: http://dx.doi.org/10.1016/j.ejps.2017.03.050
  84. H. Patel, V. P. Mundada, and K. K. Sawant, “Fabrication of solid lipid nanoparticles of lurasidone HCl for oral delivery: optimization,in vitrocharacterization, cell line studies andin vivoefficacy in schizophrenia,” Drug Development and Industrial Pharmacy, vol. 45, no. 8, pp. 1242–1257, Jun. 2019, doi: 10.1080/03639045.2019.1593434. [Online]. Available: http://dx.doi.org/10.1080/03639045.2019.1593434
  85. Silki and V. R. Sinha, “Enhancement of In Vivo Efficacy and Oral Bioavailability of Aripiprazole with Solid Lipid Nanoparticles,” AAPS PharmSciTech, vol. 19, no. 3, pp. 1264–1273, Jan. 2018, doi: 10.1208/s12249-017-0944-5. [Online]. Available: http://dx.doi.org/10.1208/s12249-017-0944-5
  86. Celik, “Risperidone mucoadhesive buccal tablets: formulation design, optimization and evaluation,” Drug Design, Development and Therapy, vol. Volume 11, pp. 3355–3365, Nov. 2017, doi: 10.2147/dddt.s150774. [Online]. Available: http://dx.doi.org/10.2147/dddt.s150774
  87. Shah, D. Khunt, M. Misra, and H. Padh, “Non-invasive intranasal delivery of quetiapine fumarate loaded microemulsion for brain targeting: Formulation, physicochemical and pharmacokinetic consideration,” European Journal of Pharmaceutical Sciences, vol. 91, pp. 196–207, Aug. 2016, doi: 10.1016/j.ejps.2016.05.008. [Online]. Available: http://dx.doi.org/10.1016/j.ejps.2016.05.008
  88. B. Shreya et al., “Nano-transfersomal formulations for transdermal delivery of asenapine maleate: in vitro and in vivo performance evaluations,” Journal of Liposome Research, vol. 26, no. 3, pp. 221–232, Nov. 2015, doi: 10.3109/08982104.2015.1098659. [Online]. Available: http://dx.doi.org/10.3109/08982104.2015.1098659
  89. Shahid, J. C. Neill, and J. Hutchison, “Psychiatric Drug Discovery and Development,” Seminars in Clinical Psychopharmacology, pp. 35–68, Jun. 2020, doi: 10.1017/9781911623465.004. [Online]. Available: http://dx.doi.org/10.1017/9781911623465.004
  90. Hassanzadeh, F. Atyabi, and R. Dinarvand, “The significance of artificial intelligence in drug delivery system design,” Advanced Drug Delivery Reviews, vol. 151–152, pp. 169–190, Nov. 2019, doi: 10.1016/j.addr.2019.05.001. [Online]. Available: http://dx.doi.org/10.1016/j.addr.2019.05.001
  91. Lee, A. Khemka, G. Acharya, N. Giri, and C. H. Lee, “A cascade computer model for mocrobicide diffusivity from mucoadhesive formulations,” BMC Bioinformatics, vol. 16, no. 1, Aug. 2015, doi: 10.1186/s12859-015-0684-z. [Online]. Available: http://dx.doi.org/10.1186/s12859-015-0684-z
  92. Becker et al., “Novel Orally Swallowable IntelliCap® Device to Quantify Regional Drug Absorption in Human GI Tract Using Diltiazem as Model Drug,” AAPS PharmSciTech, vol. 15, no. 6, pp. 1490–1497, Jul. 2014, doi: 10.1208/s12249-014-0172-1. [Online]. Available: http://dx.doi.org/10.1208/s12249-014-0172-1

Ahead of Print Subscription Review Article
Volume
Received March 28, 2024
Accepted April 29, 2024
Published May 2, 2024