Medicinal potential of Cullen corylifolium in ageing and ageing related diseases

Year : 2024 | Volume : | : | Page : –
By

Ayushi Tyagi

Aaysha Gupta

Sonam Chawla

  1. Student Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sector-62 Uttar Pradesh India
  2. Research Scholar Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sector-62
  3. Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Sector-62

Abstract

Cullen corylifolium is a tropical medicinal plant of the Fabaceae family, generally known as Babchi/Bakuchi in various regions of Asia. Cullen corylifolium is a traditional phyto-therapeutic plant of China used to manifest various pathological conditions since ages, possesing round and dark brown seeds with a rough texture. Cullen corylifolium has been previously reported to possess various properties such as antioxidant, anti-inflammatory and can be used as a solution to treat various ageing diorders. Despite the fact that this medicinal plant carries various therapeutic actions, the therapeutic potential of Cullen corylifolium seed is yet to be studied. Whereas, the seeds of Cullen corylifolium have previously been reported to contain various phytoconstituents including; coumarins, bavachin, bavachinin and flavonoids which may be utilised to study various geriatric ailments such as diabetes, cardiovascular diseases, osteoporosis, neuroprotection and obesity. This review seeks to assess the therapeutic effects of phytoconstituents present in the seed of Cullen corylifolium on the geriatric diseases. This review contains the mechanism of 5 phytocompounds (bavachinin, bavachin, bavachalcone, isobavachalcone, and neobavaisoflavone) present in Bakuchi seeds that have previously been reported for their anti-ageing potential and these phytocompounds were further detailed searched using scientific literature from Pubmed, Pubchem and Google Scholar. The scientific literature studied revealed that the seeds of Cullen corylifolium also possess anti-inflammatory and anti-oxidative potential that can be used further to intervene geriatric illness. As a result, this review will be beneficial in providing information for future research and in discovering the potential drug for treatment of ageing associated diseases.

Keywords: Cullen corylifolium, Neurodegenerative illness, Anti -Inflammatory Action,

How to cite this article: Ayushi Tyagi, Aaysha Gupta, Sonam Chawla. Medicinal potential of Cullen corylifolium in ageing and ageing related diseases. Research & Reviews : Journal of Herbal Science. 2024; ():-.
How to cite this URL: Ayushi Tyagi, Aaysha Gupta, Sonam Chawla. Medicinal potential of Cullen corylifolium in ageing and ageing related diseases. Research & Reviews : Journal of Herbal Science. 2024; ():-. Available from: https://journals.stmjournals.com/rrjohs/article=2024/view=147541





References

  1. Khandelwal, K_R. Practical pharmacognosy. Pragati Books Pvt. Ltd., 2008.
  2. Maisch, J. M. (1889). Useful plants of the genus Psoralea. The American Journal of Pharmacy, 61(7)
  3. Shrestha S, Jadav HR, Bedarkar P, Patgiri BJ, Harisha CR, Chaudhari SY, Prajapati PK. Pharmacognostical evaluation of Psoralea corylifolia Linn. seed. J Ayurveda Integr Med. 2018 Jul-Sep;9(3):209-212. doi: 10.1016/j.jaim.2017.05.005. Epub 2018 Aug 16. PMID: 30121145; PMCID: PMC6148055
  4. Alam F, Khan GN, Asad MHHB. Psoralea corylifolia L: Ethnobotanical, biological, and chemical aspects: A review. Phytother Res. 2018 Apr;32(4):597-615. doi: 10.1002/ptr.6006. Epub 2017 Dec 15. PMID: 29243333; PMCID: PMC7167735.
  5. Baquar, S. R. (1989). Medicinal and poisonous plants of Pakistan. Karachi: Printas Karachi 506p.‐illus.. En Icones. Geog, 6.
  6. Rizvi, M. , Saeed, A. , & Zubairy, N. (2007). Medicinal plants history, cultivation and uses. Karachi: Hamdard Institute of Advance Studies and Research, 85–87.
  7. Maciocia, Giovanni. The practice of Chinese medicine. Vol. 1. Edinburgh: Churchill Livingstone, 1994.
  8. SJc, B , November (2015). Systema Naturae The Netherlands, Amsterdam1989‐2005 Amsterdam.
  9. Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, Ma S, Guan F. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021 Apr;22(2):165-187. doi: 10.1007/s10522-021-09910-5. Epub 2021 Jan 27. PMID: 33502634; PMCID: PMC7838467.
  10. Chaudhuri, R. K. (2015). Bakuchiol: A Retinol‐Like Functional Compound, Modulating Multiple Retinol and Non‐Retinol Targets. Boca Raton: Taylor and Francis.
  11. Gidwani, B. , Alaspure, R. , Duragkar, N. , Singh, V. , Rao, S. P. , & Shukla, S. (2010). Evaluation of a novel herbal formulation in the treatment of eczema with Psoralea corylifolia. Iranian Journal of Dermatology, 13, 122–127.
  12. NHuang, K. C. (1998). The pharmacology of Chinese herbs. CRC press.
  13. Kubo, M. , Dohi, T. , Odani, T. , Tanaka, H. , & Iwamura, J. (1989). Cytotoxicity of Corylifoliae fructus. I. Isolation of the effective compound and the cytotoxicity. Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 109(12), 926–931
  14. Chung VCH, Wong CHL, Zhong CCW, Tjioe YY, Leung TH, Griffiths SM. Traditional and complementary medicine for promoting healthy ageing in WHO Western Pacific Region: Policy implications from utilisation patterns and current evidence. Integr Med Res. 2021 Mar;10(1):100469. doi: 10.1016/j.imr.2020.100469. Epub 2020 Jul 4. PMID: 32874912; PMCID: PMC7452244.
  15. Gilbert SF. Developmental Biology. 6th edition. Sunderland (MA): Sinauer Associates; 2000. Aging:The Biology of Senescence. Available from: https://www.ncbi.nlm.nih.gov/books/NBK10041/
  16. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023 Jan 19;186(2):243-278. doi: 10.1016/j.cell.2022.11.001. Epub 2023 Jan 3. PMID: 36599349.
  17. Shinde, A. N. , Malpathak, N. , & Fulzele, D. P. (2010). Determination of isoflavone content and antioxidant activity in Psoralea corylifolia L. callus cultures. Food Chemistry, 118(1), 128–132
  18. Xin D., Wang H., Yang J., et al. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. 2010;17(2):126–131. doi: 10.1016/j.phymed.2009.05.015.
  19. Zhou YT, Zhu L, Yuan Y, Ling S, Xu JW. Effects and Mechanisms of Five Psoralea Prenylflavonoids on Aging-Related Diseases. Oxid Med Cell Longev. 2020 Jun 17;2020:2128513. doi: 10.1155/2020/2128513. PMID: 32655760; PMCID: PMC7320294. Nepal M., Choi H. J., Choi B.-Y., et al. Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia- inducible factor-1α European Journal of Pharmacology. 2012;691(1-3):28–37. doi: 10.1016/j.ejphar.2012.06.028
  20. Dang Y, Ling S, Duan J, Ma J, Ni R, Xu JW. Bavachalcone-induced manganese superoxide dismutase expression through the AMP-activated protein kinase pathway in human endothelial cells. Pharmacology. 2015;95(3-4):105-10. doi: 10.1159/000375452. Epub 2015 Mar 6. PMID: 25766656.
  21. Lee H, Li H, Noh M, Ryu JH. Bavachin from Psoralea corylifolia Improves Insulin-Dependent Glucose Uptake through Insulin Signaling and AMPK Activation in 3T3-L1 Adipocytes. Int J Mol Sci. 2016 Apr 8;17(4):527. doi: 10.3390/ijms17040527. PMID: 27070585; PMCID: PMC4848983.
  22. Olivieri F., Prattichizzo F., Grillari J., Balistreri C. R. Cellular senescence and inflammaging in age-related diseases. Mediators of Inflammation. 2018;2018:6. doi: 10.1155/2018/9076485.9076485
  23. Nepal M., Choi H. J., Choi B.-Y., et al. Anti-angiogenic and anti-tumor activity of Bavachinin by targeting hypoxia- inducible factor-1α European Journal of Pharmacology. 2012;691(1-3):28–37. doi: 10.1016/j.ejphar.2012.06.028.
  24. Tannahill G. M., Curtis A. M., Adamik J., et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α 2013;496(7444):238–242. doi: 10.1038/nature11986
  25. Palsson-McDermott EM, Curtis AM, Goel G, Lauterbach MA, Sheedy FJ, Gleeson LE, van den Bosch MW, Quinn SR, Domingo-Fernandez R, Johnston DG, Jiang JK, Israelsen WJ, Keane J, Thomas C, Clish C, Vander Heiden M, Xavier RJ, O’Neill LA. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages. Cell Metab. 2015 Jan 6;21(1):65-80. doi: 10.1016/j.cmet.2014.12.005. Erratum in: Cell Metab. 2015 Feb 3;21(2):347. Jiang, Jain-Kang [corrected to Jiang, Jian-Kang]; Vanden Heiden, Matthew [corrected to Vander Heiden, Matthew]. Erratum in: Cell Metab. 2015 Feb 3;21(2):347. PMID: 25565206; PMCID: PMC5198835.
  26. Warbrick I, Rabkin SW. Hypoxia-inducible factor 1-alpha (HIF-1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obes Rev. 2019 May;20(5):701-712. doi: 10.1111/obr.12828. Epub 2019 Mar 3. PMID: 30828970.
  27. Raisz L., Rodan G. (2003) Pathogenesis of osteoporosis. Endocrinol Metab Clin North Am 32: 15–24
  28. Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone. 2019 Jun;123:265-273. doi: 10.1016/j.bone.2019.03.041. Epub 2019 Apr 1. PMID: 30946971.
  29. Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, Drake MT, Tchkonia T, LeBrasseur NK, Kirkland JL, Bonewald LF, Pignolo RJ, Monroe DG, Khosla S. Identification of Senescent Cells in the Bone Microenvironment. J Bone Miner Res. 2016 Nov;31(11):1920-1929. doi: 10.1002/jbmr.2892. Epub 2016 Oct 24. PMID: 27341653; PMCID: PMC5289710.
  30. Weng ZB, Gao QQ, Wang F, Zhao GH, Yin FZ, Cai BC, Chen ZP, Li WD. Positive skeletal effect of two ingredients of Psoralea corylifolia L. on estrogen deficiency-induced osteoporosis and the possible mechanisms of action. Mol Cell Endocrinol. 2015 Dec 5;417:103-13. doi: 10.1016/j.mce.2015.09.025. Epub 2015 Sep 28. PMID: 26419930.
  31. Song L, Liu M, Ono N, Bringhurst FR, Kronenberg HM, Guo J. Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes. J Bone Miner Res. 2012 Nov;27(11):2344-58. doi: 10.1002/jbmr.1694. PMID: 22729939; PMCID: PMC3474875.
  32. Don MJ, Lin LC, Chiou WF. Neobavaisoflavone stimulates osteogenesis via p38-mediated up-regulation of transcription factors and osteoid genes expression in MC3T3-E1 cells. Phytomedicine. 2012 Apr 15;19(6):551-61. doi: 10.1016/j.phymed.2012.01.006. Epub 2012 Mar 6. PMID: 22397994.
  33. Xu QX, Hu Y, Li GY, Xu W, Zhang YT, Yang XW. Multi-Target Anti-Alzheimer Activities of Four Prenylated Compounds from Psoralea Fructus. Molecules. 2018 Mar 8;23(3):614. doi: 10.3390/molecules23030614. PMID: 29518051; PMCID: PMC6017461.
  34. Jing H, Wang S, Wang M, Fu W, Zhang C, Xu D. Isobavachalcone Attenuates MPTP-Induced Parkinson’s Disease in Mice by Inhibition of Microglial Activation through NF-κB Pathway. PLoS One. 2017 Jan 6;12(1):e0169560. doi: 10.1371/journal.pone.0169560. PMID: 28060896; PMCID: PMC5217967.
  35. Trinh K, Andrews L, Krause J, Hanak T, Lee D, Gelb M, Pallanck L. Decaffeinated coffee and nicotine-free tobacco provide neuroprotection in Drosophila models of Parkinson’s disease through an NRF2-dependent mechanism. J Neurosci. 2010 Apr 21;30(16):5525-32. doi: 10.1523/JNEUROSCI.4777-09.2010. PMID: 20410106; PMCID: PMC3842467.
  36. Li S, Zhao X, Lazarovici P, Zheng W. Artemether Activation of AMPK/GSK3β(ser9)/Nrf2 Signaling Confers Neuroprotection towards β-Amyloid-Induced Neurotoxicity in 3xTg Alzheimer’s Mouse Model. Oxid Med Cell Longev. 2019 Nov 21;2019:1862437. doi: 10.1155/2019/1862437. PMID: 31871541; PMCID: PMC6907052.
  37. Ma S., Chen J., Chen C., et al. Erythropoietin rescues memory impairment in a rat model of chronic cerebral hypoperfusion via the EPO-R/JAK2/STAT5/PI3K/Akt/GSK-3β pathway. Molecular Neurobiology. 2018;55(4):3290–3299. doi: 10.1007/s12035-017-0568-5. .
  38. Lee ST, Chu K, Park JE, Jung KH, Jeon D, Lim JY, Lee SK, Kim M, Roh JK. Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer’s disease models. J Neurochem. 2012 Jan;120(1):115-24. doi: 10.1111/j.1471-4159.2011.07534.x. Epub 2011 Nov 11. PMID: 22004348.
  39. Kanaan NM, Collier TJ, Marchionini DM, McGuire SO, Fleming MF, Sortwell CE. Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson’s disease. Brain Res. 2006 Jan 12;1068(1):221-9. doi: 10.1016/j.brainres.2005.10.078. Epub 2005 Dec 20. PMID: 16368081.
  40. Junk A. K., Mammis A., Savitz S. I., et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(16):10659–10664. doi: 10.1073/pnas.152321399.

Ahead of Print Subscription Review Article
Volume
Received April 29, 2024
Accepted May 10, 2024
Published May 24, 2024