Protective Effects Of Curcumin Against Osteoporosis And Its Molecular Mechanism

Year : 2024 | Volume :11 | Issue : 01 | Page : –
By

Chhatrapalsinh R. Parmar

Pratiksha N. Patil

Riddhi S.Bhavsar

Rohitkumar D.Shah

Riya A.Rajput

  1. Student Ahinsa Institute of Pharmacy Maharashtra India
  2. Student Ahinsa Institute of Pharmacy Maharashtra India
  3. Student Ahinsa Institute of Pharmacy Maharashtra India
  4. Student Ahinsa Institute of Pharmacy Maharashtra India
  5. Student Ahinsa Institute of Pharmacy Maharashtra India

Abstract

One of the most prevalent metabolic disorders is osteoporosis (OP), which primarily affects postmenopausal women and the elderly. It is often associated with gradual loss of bone density, ongoing destruction of bone microstructure and increased risk of osteoporosis. Pharmacotherapy is the primary approach for treating and preventing osteoporosis. But persistent medication therapy invariably results in drug responses and particular adverse effects. Therefore, scientists continue to search for new monomeric compounds from natural plants. Curcumin (CUR), a drug candidate for the treatment of osteoporosis, is a natural phenolic compound with various pharmacological and biological activities such as antioxidant, antiapoptotic, and anti-inflammatory. This connection has been studied for the maintenance of bone health in various models of osteoporosis. We go over preclinical and clinical research on curcumin’s ability to prevent and treat osteoporosis. These results suggest that, if rigorous clinical and clinical studies are conducted, curcumin could be used as a supplement and other medications to heal bones by targeting the standard layers of the osteoporosis process. In addition to providing information for future study and development of curcumin, this article discusses the mechanism of action and therapeutic potential of curcumin in preventing and treating osteoporosis. Contents: The medication curcumin has a wide range of chemical and biological effects.

Keywords: Osteoporosis (OP), Osteoblast, Osteoclast, Molecular Mechanism, Curcumin (CUR).

[This article belongs to Research & Reviews: A Journal of Drug Design & Discovery(rrjoddd)]

How to cite this article: Chhatrapalsinh R. Parmar, Pratiksha N. Patil, Riddhi S.Bhavsar, Rohitkumar D.Shah, Riya A.Rajput. Protective Effects Of Curcumin Against Osteoporosis And Its Molecular Mechanism. Research & Reviews: A Journal of Drug Design & Discovery. 2024; 11(01):-.
How to cite this URL: Chhatrapalsinh R. Parmar, Pratiksha N. Patil, Riddhi S.Bhavsar, Rohitkumar D.Shah, Riya A.Rajput. Protective Effects Of Curcumin Against Osteoporosis And Its Molecular Mechanism. Research & Reviews: A Journal of Drug Design & Discovery. 2024; 11(01):-. Available from: https://journals.stmjournals.com/rrjoddd/article=2024/view=143431





Browse Figures

References

1. Abu-Taweel, G. M., Attia, M. F., Hussein, J., Mekawi, E. M., Galal, H. M., Ahmed, E. I.Et al. (2020). Curcumin nanoparticles have potential antioxidant effect and restore Tetrahydrobiopterin levels in experimental diabetes. Biomed. Pharmacother. 131,110688. Doi:10.1016/j.biopha.2020.110688
2. Baell, J. B. (2016). Feeling nature’s PAINS: Natural products, natural product drugs, And pan assay interference compounds (PAINS). J. Nat. Prod. 79 (3), 616–628. Doi:10.1021/acs.jnatprod.5b00947
3. Bai, L., Du, Z., Du, J., Yao, W., Zhang, J., Weng, Z., et al. (2018). A multifaceted Coating on titanium dictates osteoimmunomodulation and osteo/angio-genesis towards Ameliorative osseointegration. Biomaterials 162, 154–169. Doi:10.1016/j.biomaterials. 2018.02.010
4. Ballane, G., Cauley, J., Luckey, M., and El-Hajj Fuleihan, G. (2017). Worldwide Prevalence and incidence of osteoporotic vertebral fractures. Osteoporos. Int. 28,1531–1542. Doi:10.1007/s00198-017-3909-3
5. Barik, A., Ray, S. K., Byram, P. K., Sinha, R., and Chakravorty, N. (2020). Extensive Early mineralization of pre-osteoblasts, inhibition of osteoclastogenesis and faster peri-Implant bone healing in osteoporotic rat model: Principle effectiveness of bone-specific Delivery of Tibolone as evaluated in vitro and in vivo. Biomed. Mater. 15 (6), 064102.Doi:10.1088/1748-605X/abb12b
6. Birmingham, E., Niebur, G., McHugh, P. E., Shaw, G., Barry, F. P., and McNamara, L.M. (2012). Osteogenic differentiation of mesenchymal stem cells is regulated by Osteocyte and osteoblast cells in a simplified bone niche. Eur. Cells Mater. 23,13–27. Doi:10.22203/ecm.v023a02
7. Bisson, J., McAlpine, J. B., Friesen, J. B., Chen, S.-N., Graham, J., and Pauli, G. F.(2016). Can invalid bioactives undermine natural product-based drug discovery? J. Med.Chem. 59 (5), 1671–1690. Doi:10.1021/acs.jmedchem.5b01009

8. Bukhari, S. N. A., Hussain, F., Thu, H. E., and Hussain, Z. (2019). Synergistic effects of Combined therapy of curcumin and fructus ligustri lucidi for treatment of osteoporosis: Cellular and molecular evidence of enhanced bone formation. J. Integr. Med. 17 (1),38–45. Doi:10.1016/j.joim.2018.08.003
9. Chen, Z., Xue, J., Shen, T., Ba, G., Yu, D., and Fu, Q. (2016a). Curcumin alleviates Glucocorticoid-induced osteoporosis by protecting osteoblasts from apoptosis in vivo andIn vitro. Clin. Exp. Pharmacol. Physiol. 43 (2), 268–276. Doi:10.1111/1440-1681.12513
10. Chen, Z., Xue, J., Shen, T., Mu, S., and Fu, Q. (2016b). Curcumin alleviates Glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling Pathway. Int. J. Mol. Med. 37 (2), 329–338. Doi:10.3892/ijmm.2015.2432
11. Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E. M., and Xie, C. (2018). Osteoblast–osteoclast interactions. Connect. Tissue Res. 59 (2), 99–107. Doi:10.1080/03008207.2017.1290085
12. Chen, S., Liang, H., Ji, Y., Kou, H., Zhang, C., Shang, G., et al. (2021). Curcumin Modulates the crosstalk between macrophages and bone mesenchymal stem cells to Ameliorate osteogenesis. Front. Cell Dev. Biol. 9, 634650. Doi:10.3389/fcell.2021.634650
13. Chen, Y., Wu, X., Li, J., Jiang, Y., Xu, K., and Su, J. (2022). Bone-targeted nanoparticle Drug delivery system: an emerging strategy for bone-related disease. Front. Pharmacol.13. doi:10.3389/fphar.2022.909408
14. Cheng, C.-H., Chen, L.-R., and Chen, K.-H. (2022). Osteoporosis due to hormone Imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse On bone turnover. Int. J. Mol. Sci. 23 (3), 1376. Doi:10.3390/ijms23031376
15. Cho, D.-C., Kim, K.-T., Jeon, Y., and Sung, J.-K. (2012). A synergistic bone sparing Effect of curcumin and alendronate in ovariectomized rat. Acta Neurochir. 154,2215–2223. Doi:10.1007/s00701-012-1516-9
16. Cho, D.-C., Jung, H.-S., Kim, K.-T., Jeon, Y., Sung, J.-K., and Hwang, J.-H. (2013).Therapeutic advantages of treatment of high-dose curcumin in the ovariectomized rat .J.Korean Neurosurg. Soc. 54 (6), 461–466. Doi:10.3340/jkns.2013.54.6.461
17. Cho, D.-C., Ryu, K., Kim, K.-T., and Sung, J.-K. (2017). The therapeutic effects ofCombination therapy with curcumin and alendronate on spine fusion surgery in the Ovariectomized rats. Korean J. Spine 14 (2), 35–40. Doi:10.14245/kjs.2017.14.2.35
18. Clynes, M. A., Harvey, N. C., Curtis, E. M., Fuggle, N. R., Dennison, E. M., and Cooper, C. (2020). The epidemiology of osteoporosis. Br. Med. Bull. 133, 105–117.Doi:10.1093/bmb/ldaa005
19. Dai, P., Mao, Y., Sun, X., Li, X., Muhammad, I., Gu, W., et al. (2017). Attenuation of Oxidative stress-induced osteoblast apoptosis by curcumin is associated with Preservation of mitochondrial functions and increased Akt-GSK3β signaling. Cell.Physiol. Biochem. 41 (2), 661–677. Doi:10.1159/000457945
20. De Souza Ferreira, S. B., and Bruschi, M. L. (2019). Improving the bioavailability of Curcumin: is micro/nanoencapsulation the key? Future Sci. 10, 83–86. Doi:10.4155/tde-2018-0075
21. Deng, J., Golub, L. M., Lee, H.-M., Raja, V., Johnson, F., Kucine, A., et al. (2021). A Novel modified-curcumin promotes resolvin-like activity and reduces bone loss in Diabetes-induced experimental periodontitis. J. Inflamm. Res. 14, 5337–5347. Doi:10.2147/JIR.S330157
22. Deogade, S. C., and Ghate, S. (2015). Curcumin: therapeutic applications in systemic And oral health. Int. J. Biol. Pharm. Res. 6 (4), 281–290. Doi:10.1111/jphp.1266
23. Devassy, J. G., Nwachukwu, I. D., and Jones, P. J. (2015). Curcumin and cancer: Barriers to obtaining a health claim. Nutr. Rev. 73 (3), 155–165. Doi:10.1093/nutrit/Nuu064
24. Dong, J., Tao, L., Abourehab, M. A., and Hussain, Z. (2018). Design and developmentOf novel hyaluronate-modified nanoparticles.


Regular Issue Subscription Review Article
Volume 11
Issue 01
Received March 12, 2024
Accepted April 5, 2024
Published April 15, 2024