An in-silico toxicity study of the phytocompounds found in Pongamia pinnata leaves using the ProTox-II web server

Year : 2024 | Volume :13 | Issue : 10 | Page : –
By

Gemini Patel,

Neeraj Wadhwa,

  1. Research Scholar Jaypee Institute of Information Technology, Department of Biotechnology, A-10, Sector 62, Noida. UP, and (2) ICAR-IVRI, Izatnagar, Bareilly, UP Uttar Pradesh India
  2. Professor Jaypee Institute of Information Technology, Department of Biotechnology, A-10, Sector 62, Noida. UP, and (2) ICAR-IVRI, Izatnagar, Bareilly, UP Uttar Pradesh India

Abstract

The aim of the current study was to determine the Insilco toxicity of the phytocompound present in the leaves of Pongamia pinnata. The leaves of Pongamia pinnata have long been used in traditional medicine for their therapeutic properties. Nowadays, herbal toxicity is a common problem caused by incorrect dosage. The FDA reviews the safety and effectiveness of herbal products only in response to patient or health care provider complaints—problems with them, such as side effects, interactions, and allergies. ProTox-II is a web server that uses computational methods to predict the toxicity of small molecules. It is a virtual laboratory that uses factors such as most common features, molecular similarity, and fragment propensities to predict a variety of toxicity endpoints including immunotoxicity, carcinogenicity, mutagenicity, acute toxicity, hepatotoxicity, cytotoxicity, adverse signaling pathways (Tox21) and toxicity targets. The server receives a two-dimensional chemical structure as input and returns likely toxicity profiles for the compound. Based on the bioactive compounds we wish to investigate further; We selected bioactive compounds from Pongamia pinnata leaves from several published studies. The bioactive compounds rutin, methyl hexadecenoate, isoquercitrin, pongagallon B, pongagallon A, bis(2-methylheptyl) phthalate, vitexin, vecinin-2, 2H-1-benzopyran-6-ol, 3,4-dihydro-2, 8-dimethyl -2-[4,8,12-trimethyltridecyl], 12ahydroxy-alpha-toxicarol were selected for in-silico toxicity study. According to our knowledge, among the ten bioactive hexadecanoic acid methyl esters 2H-1-benzopyran-6-ol,3,4-dihydro-2,8-dimethyl-2-[4,8,12-trimethyltridecyl] of all toxicity classes are inactive. Based on the prediction of oral LD50 dose value of ten phytocompounds, only 12 α-hydroxy-toxiccarol are toxic. However, other researchers found numerous positive effects in vitro.

Keywords: Insilco toxicity; ProTox-II webserver; Pongamia pinnata bioactive compound; Herbal medicine.

[This article belongs to Research & Reviews : Journal of Crop science and Technology(rrjocst)]

How to cite this article: Gemini Patel, Neeraj Wadhwa. An in-silico toxicity study of the phytocompounds found in Pongamia pinnata leaves using the ProTox-II web server. Research & Reviews : Journal of Crop science and Technology. 2024; 13(10):-.
How to cite this URL: Gemini Patel, Neeraj Wadhwa. An in-silico toxicity study of the phytocompounds found in Pongamia pinnata leaves using the ProTox-II web server. Research & Reviews : Journal of Crop science and Technology. 2024; 13(10):-. Available from: https://journals.stmjournals.com/rrjocst/article=2024/view=156186

References

  1. All natural. Nature Chemical Biology. 2007 Jul;3(7):351. doi: 10.1038/nchembio0707-351.
  2. Zhang X, Chen F, Wang M. Bioactive Substances of Animal Origin. In: Cheung PCK, Mehta BM, editors. Handbook of Food Chemistry, Berlin: Springer-Verlag; 2015, p. 1-21. doi: 10.1007/978-3-642-41609-5_14-1.
  3. Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nature Reviews Drug Discovery. 2021; 20(03):200-216. DOI:10.1038/s41573-020-00114-z
  4. Orhan IE. Pharmacognosy: Science of natural products in drug discovery. Bioimpacts. 2014; 4(3): 109–110. doi: 10.15171/bi.2014.001.
  5. Sun H, Xiao D, Liu W, Li X, Lin Z, Li Y, Ding Y. Well-known polypeptide of deer antler velvet with key actives: modern pharmacological advances. Naunyn-Schmiedeberg’s Archives of Pharmacology. 2024; 397(1):1-17. 10.1007/s00210-023-02642-y.
  6. Li N, Zhang M, Drummen GPC, Zhao Y, Tan YF, Luo S, Qu XB. Sika deer antler collagen type I-accelerated osteogenesis in bone marrow mesenchymal stem cells via the Smad pathway. Evidence-Based Complementary and Alternative Medicine. 2016; (2016) 2109204 (13). https://doi.org/10.1155/2016/2109204
  7. Sigwart JD, Blasiak R, Jaspars M, Jouffray JB, Tasdemir D. Unlocking the potential of marine biodiscovery. Natural Product Reports. 2021; 38(07):1235-1242. https://doi.org/10.1039/d0np00067a
  8. Haque N, Parveen S, Tang T, Wei J, Huang Z. Marine natural products in clinical use. Marine Drugs. 2022; 20(8):528. doi: 10.3390/md20080528.
  9. Ghumare P, Jirekar DB, Farooqui M, Naikwade SD. A review of Pongamia pinnata–an important medicinal plant. Current Research in Pharmaceutical Sciences. 2014; 04 (02): 44-47.
  10. Kumari R, Kotecha M. A review on the Standardization of herbal medicines. International Journal of Pharma Sciences and Research. 2016; 7(02):97-106.
  11. Ekor M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology. 2014; 4:177. doi: 10.3389/fphar.2013.00177.
  12. McKinney JD, Richard A, Waller C, Newman MC, Gerberick F. Practice of Structure-Activity Relationships (SAR) in Toxicology. Toxicological Sciences. 2000; 56(01):8–17. doi: 10.1093/toxsci/56.1.82.
  13. Martin, T., P. Harten, AND D. Young. TEST (Toxicity Estimation Software Tool) Ver 4.1. U.S. Environmental Protection Agency, Washington, DC, EPA/600/C-12/006, 2012.
  14. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic acids research. 2018; 46(W1): W257-W263. doi: 10.1093/nar/gky318.
  15. Wang J, Li Y. Phytocompounds: A Promising Source of Antimicrobial Agents. In: Antimicrobial Resistance and Infection Control. 2022, pp. 1–21.
  16. Chugh A, Sehgal I, Khurana N, Verma K, Rolta R, Vats P, Salaria D et al. Comparative docking studies of drugs and phytocompounds for emerging variants of SARS-CoV-2. 3 Biotech. 2023; 13(01):36. doi: 10.1007/s13205-022-03450-6.
  17. Drwal MN, Banerjee P, Dunkel M, Wettig MR, Preissner R. ProTox: A web server for the in-silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014; 42: W53–W58. doi; 1093/nar/gku401.
  18. Gangurde M, and Nehete JY. A review on Pongamia Pinnata (L.) Pierre: A great versatile fabales plant.IJCRT. 2021; 9(5)i479-i483.
  19. Le VN, Thang PD, Sy VV, Hoang NH, Huong PT. Antimicrobial activity and chemical investigation of Pongamia pinnata L. Leaf. J Pharmacognosy Phytochemistry. 2022; 11(04):030–032.
  20. Rameshthangam P, Ramasamy P. Antiviral activity of bis (2-methylheptyl) phthalate isolated from Pongamia pinnata leaves against White Spot Syndrome Virus of Penaeus monodon Fabricius. Virus Res. 2007; 126(1-2):038–044. doi.: 10.1016/j.virusres.2007.01.014.
  21. Pulipati S, Babu PS, Lakshmi DN, Navyasri N, Harshini Y, Vyshnavi J, Prasanth M. A phyto pharmacological review on a versatile medicinal plant: Pongamia pinnata (L.) Pierre. J Pharmacognosy Phytochemistry. 2018; 7(4):459–463.
  22. Tolosa J, Barba FJ, Pallarés N, Ferrer E. Mycotoxin identification and in-silico toxicity assessment prediction in Atlantic Salmon. Marine Drugs. 2020; 18(12):629. doi: 10.3390/md18120629
  23. Haertel B, Preissner R. Computational prediction of immune cell cytotoxicity. Food Chem Toxicol. 2017; 107:150–166. doi: 10.1016/j.fct.2017.05.041
  24. Uesawa Y. Efficiency of pharmaceutical toxicity prediction in computational toxicology. Toxicol Res. 2024; 40(1):1-9. doi: 10.1007/s43188-023-00215-y.
  25. Rajawat NK, Verma R, Soni I. Median lethal dose (LD50) estimation of β-cyfluthrin in male and female Swiss albino mice. Int J Sci Res Publ. 2015; 5(8):1–4. doi: 10.1111/bcpt.12622.
  26. Mostert V, Heimann KG, Doughty K. Examination of Acute and Repeated-Dose Toxicity. Regulatory Toxicology. 2020; 1-9. doi: 10.4103/ayu.AYU_18_18
  27. Saganuwan SA. Comparative therapeutic index, lethal time and safety margin of various toxicants and snake antivenoms using newly derived and old formulas. BMC Res Notes. 2020; 13(1):292. doi: 10.1186/s13104-020-05134-x.
  28. Habet S. Narrow Therapeutic Index drugs: clinical pharmacology perspective. J Pharm Pharmacol. 2021; 73(10):1285–1291. doi: 10.1093/jpp/rgab102
  29. Jacobs T, De Ridder F, Rusch S, Van Peer A, Molenberghs G, Bijnens L. Including information on the therapeutic window in bioequivalence acceptance. Pharm Res. 2008; 25:2628–2638. DOI:10.1007/s11095-008-9680-6
  30. Tyson RJ, Park CC, Powell JR, Weiner D, Watkins PB, Gonzalez D. Precision dosing priority criteria: drug, disease, and patient population variables. Front Pharmacol. 2020; 11:511542. doi: 10.3389/fphar.2020.00420
  31. Grandjean P. Paracelsus Revisited: The Dose Concept in a Complex World. Basic & Clinical Pharmacology & Toxicology. 2016; 119:126–132. doi: 10.1111/bcpt.12622
  32. Suvorov A. The Dose Disrupts the Pathway: Application of Paracelsus Principle to Mechanistic Toxicology. Available at SSRN 4635097. doi: 2139/ssrn.4635097

 

 

 


Regular Issue Subscription Original Research
Volume 13
Issue 10
Received May 28, 2024
Accepted June 28, 2024
Published July 8, 2024