Recombinant Protein Manufacturing Using Actinomycetes as Host Cells

Open Access

Year : 2022 | Volume : 09 | Issue : 02 | Page : 23-
By

    Amaan Khan

  1. Researcher, Department of medical science and technology, Bharat Ayurved Medical College & Hospital Research Centre, Muzaffarnagar, Uttar Pradesh, India

Abstract

Actinobacteria are highly sought-after for use as cell factories or bioreactors in the pharmaceutical, agricultural, industrial, and environmental sectors. The commercial production of these proteins as recombinants and the biochemical and structural characterization of key proteins have been made possible by the genome sequencing of numerous species of actinomycetes. In this regard, better expression vectors that may be used with actinomycetes are required. As discussed in this article, recent developments in gene expression systems, knowledge of the intracellular environment, and identification and characterization of plasmids have made it possible to create workable recombinant expression systems in actinomycetes.

Keywords: Actinomycetes, recombinant protein, plasmid, yeast, promoter, gene

[This article belongs to Research & Reviews: A Journal of Bioinformatics(rrjobi)]

How to cite this article: Amaan Khan Recombinant Protein Manufacturing Using Actinomycetes as Host Cells rrjobi 2022; 09:23-
How to cite this URL: Amaan Khan Recombinant Protein Manufacturing Using Actinomycetes as Host Cells rrjobi 2022 {cited 2022 Aug 28};09:23-. Available from: https://journals.stmjournals.com/rrjobi/article=2022/view=91698

Full Text PDF Download

Browse Figures

References

1. Kashima Y, Udaka S. High-level production of hyperthermophilic cellulase in the Bacillus brevis expression and secretion system. Biosci Biotechnol Biochem. 2004;68:235–237.
2. Udaka S, Yamagata HY. Protein secretion in Bacillus brevis. Antonie Van Leeuwenhoek. 1993;64:137–143.
3. Lam KHE, Chow KC, Wong WKR. Construction of an efficient Bacillus subtilis system for extracellular production of heterologous proteins. J Biotechnol. 1998;63:167–177.
4. Loir YL, Azevedo V, Oliveira SC, Freitas DA, Miyoshi A, Bermúdez-Humarán LG, Nouaille S, Ribeiro LA, Leclercq S, Gabriel JE, Guimaraes VD, Oliveira MN, Charlier C, Gautier M, Langella P. Protein secretion in Lactococcus lactis: an efficient way to increase the overall heterologous protein production. Microb Cell Fact. 2005;4:2.
5. Kuipers OP, de Ruyter PG, Kleerebezem M, de Vos WM. Controlled overproduction of proteins by lactic acid bacteria. Trends Biotechnol. 1997;15:135–140.
6. Billman-Jacobe H. Expression in bacteria other than Escherichia coli. Curr Opin Biotechnol. 1996;7:500–504.
7. Brooks SA. Appropriate glycosylation of recombinant proteins for human use: implications of choice of expression system. Mol Biotechnol. 2004;28:241–256.
8. Connell ND. Expression systems for use in actinomycetes and related organisms. Curr Opin Biotechnol. 2001;12:446–449.
9. Flores FJ, Rincón J, Martin JF. Characterization of the iron-regulated desA promoter of Streptomyces pilosus as a system for controlled gene expression in actinomycetes. Microb Cell Fact. 2003;2:5.
10. Herai S, Hashimoto Y, Higashibata H, Maseda H, Ikeda H, Omura S, Kobayashi M. Hyper- inducible expression system for streptomycetes. Proc Natl Acad Sci USA. 2004;101:14031–14035.
11. Nakashima N, Tamura T. A novel system for expressing recombinant proteins over a wide temperature range from 4 to 35 degrees C. Biotechnol Bioeng. 2004;86:136–148.
12. Nakashima N, Tamura T. Isolation and characterization of a rolling-circle-type plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-recombinant protein expression. Appl Environ Microbiol. 2004;70:5557–5568.
13. Tokiwa Y, Buenaventurada PC. Degradation of microbial polyesters. Biotechnol Lett. 2004;26:1181–1189.
14. Weber T, Welzel K, Pelzer S, Vente A, Wohlleben W. Exploiting the genetic potential of polyketide producing streptomycetes. J Biotechnol. 2003;106:221–232.
15. Komeda H, Hori Y, Kobayashi M, Shimizu S. Transcriptional regulation of the Rhodococcus rhodochrous J1 nitA gene encoding a nitrilase. Proc Natl Acad Sci USA. 1996;93:10572–10577.
16. Triccas JA, Parish T, Britton WJ, Gicquel B. An inducible expression system permitting the efficient purification of a recombinant antigen from Mycobacterium smegmatis. FEMS Microbiol Lett. 1998;167:151–156.
17. Enguita FJ, de la Fuente JL, Martín JF, Liras P. An inducible expression system of histidine-tagged proteins in Streptomyces lividans for one-step purification by Ni2+ affinity chromatography. FEMS Microbiol Lett. 1996;137:135–140.
18. McDaniel R, Ebert-Khosla S, Hopwood DA, Khosla C. Engineered biosynthesis of novel polyketides. Science. 1993;262:1546–1550.
19. Rowe CJ, Cortés J, Gaisser S, Staunton J, Leadlay PF. Construction of new vectors for high-level expression in actinomycetes. Gene. 1998;216:215–223.
20. Spratt JM, Britton WJ, Triccas JA. Identification of strong promoter elements of Mycobacterium smegmatis and their utility for foreign gene expression in mycobacteria. FEMS Microbiol Lett. 2003;224:139–142.
21. Kataoka M, Tatsuta T, Suzuki I, Kosono S, Seki T, Yoshida T. Development of a temperature- inducible expression system for Streptomyces spp. J Bacteriol. 1996;178:5540–5542.
22. Lim A, Boon C, Dick T. Inducibility of the Streptomyces traRts107-Ptra expression cassette in Mycobacterium smegmatis. Biol Chem. 2000;381:517–519.
23. Binnie C, Cossar JD, Stewart DIH. Heterologous biopharmaceutical protein expression in Streptomyces. Trends Biotechnol. 1997;15:315–320.
24. Schmitt-John T, Engels JW. Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl Microbiol Biotechnol. 1992;36:493–498.
25. Zazopoulos E, Huang K, Staffa A, Liu W, Bachman BO, Nonaka K, Ahlert J, Thorson JS, Shen B, Farnet CM. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol. 2003;21:187–190.
26. Lammertyn E, Anné J. Modifications of Streptomyces signal peptides and their effects on prior production and secretion. FEMS Microbiol Lett. 1998;160:1–10.
27. Fornwald JA, Donovan MJ, Geber R, Keller J, Taylor DP, Arcuri EJ, Brawner ME. Soluble forms of the human T cell receptor CD4 are efficiently expressed by Streptomyces lividans. Bio/Technology. 1993;11:1031–1036.
28. Singer ME, Finnerty WR. Construction of an Eschericha coli-Rhodococcus shuttle vector and plasmid transformation in Rhodococcus spp. J Bacteriol. 1988;170:638–645.
29. Mujacic M, Cooper KW, Baneyx F. Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli : application to the production of a toxic and proteolytically sensitive fusion protein. Gene. 1999;238:325–332.
30. Qing G, Ma LC, Khorchid A, Swapna GVT, Tapas KM, Takayama MM, Xia B, Phadtare S, Ke H, Acton T, Montelione GT, Ikura M, Inouye M. Cold-shock induced high-yield protein production in Escherichia coli. Nat Biotechnol. 2004;22:877–882.
31. Mitani Y, Meng XY, Kamagata Y, Tamura T. Characterization of LtsA from Rhodococcus erythropolis-an enzyme with glutamine amidotransferase activity. J Bacteriol.


Regular Issue Open Access Article
Volume 09
Issue 02
Received August 11, 2022
Accepted August 25, 2022
Published August 28, 2022